Marta H.G. Costa , Inês Carrondo , Inês A. Isidro , Margarida Serra
{"title":"利用拉曼光谱进行细胞治疗生物处理。","authors":"Marta H.G. Costa , Inês Carrondo , Inês A. Isidro , Margarida Serra","doi":"10.1016/j.biotechadv.2024.108472","DOIUrl":null,"url":null,"abstract":"<div><div>Cell therapy manufacturing requires precise monitoring of critical parameters to ensure product quality, consistency and to facilitate the implementation of cost-effective processes. While conventional analytical methods offer limited real-time insights, integration of process analytical technology tools such as Raman spectroscopy in bioprocessing has the potential to drive efficiency and reliability during the manufacture of cell-based therapies while meeting stringent regulatory requirements. The non-destructive nature of Raman spectroscopy, combined with its ability to be integrated on-line with scalable platforms, allows for continuous data acquisition, enabling real-time correlations between process parameters and critical quality attributes.</div><div>Herein, we review the role of Raman spectroscopy in cell therapy bioprocessing and discuss how simultaneous measurement of distinct parameters and attributes, such as cell density, viability, metabolites and cell identity biomarkers can streamline on-line monitoring and facilitate adaptive process control. This, in turn, enhances productivity and mitigates process-related risks. We focus on recent advances integrating Raman spectroscopy across various manufacturing stages, from optimizing culture media feeds to monitoring bioprocess dynamics, covering downstream applications such as detection of co-isolated contaminating cells, cryopreservation, and quality control of the drug product. Finally, we discuss the potential of Raman spectroscopy to revolutionize current practices and accelerate the development of advanced therapy medicinal products.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"77 ","pages":"Article 108472"},"PeriodicalIF":12.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Raman spectroscopy for cell therapy bioprocessing\",\"authors\":\"Marta H.G. Costa , Inês Carrondo , Inês A. Isidro , Margarida Serra\",\"doi\":\"10.1016/j.biotechadv.2024.108472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cell therapy manufacturing requires precise monitoring of critical parameters to ensure product quality, consistency and to facilitate the implementation of cost-effective processes. While conventional analytical methods offer limited real-time insights, integration of process analytical technology tools such as Raman spectroscopy in bioprocessing has the potential to drive efficiency and reliability during the manufacture of cell-based therapies while meeting stringent regulatory requirements. The non-destructive nature of Raman spectroscopy, combined with its ability to be integrated on-line with scalable platforms, allows for continuous data acquisition, enabling real-time correlations between process parameters and critical quality attributes.</div><div>Herein, we review the role of Raman spectroscopy in cell therapy bioprocessing and discuss how simultaneous measurement of distinct parameters and attributes, such as cell density, viability, metabolites and cell identity biomarkers can streamline on-line monitoring and facilitate adaptive process control. This, in turn, enhances productivity and mitigates process-related risks. We focus on recent advances integrating Raman spectroscopy across various manufacturing stages, from optimizing culture media feeds to monitoring bioprocess dynamics, covering downstream applications such as detection of co-isolated contaminating cells, cryopreservation, and quality control of the drug product. Finally, we discuss the potential of Raman spectroscopy to revolutionize current practices and accelerate the development of advanced therapy medicinal products.</div></div>\",\"PeriodicalId\":8946,\"journal\":{\"name\":\"Biotechnology advances\",\"volume\":\"77 \",\"pages\":\"Article 108472\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology advances\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734975024001666\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975024001666","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Harnessing Raman spectroscopy for cell therapy bioprocessing
Cell therapy manufacturing requires precise monitoring of critical parameters to ensure product quality, consistency and to facilitate the implementation of cost-effective processes. While conventional analytical methods offer limited real-time insights, integration of process analytical technology tools such as Raman spectroscopy in bioprocessing has the potential to drive efficiency and reliability during the manufacture of cell-based therapies while meeting stringent regulatory requirements. The non-destructive nature of Raman spectroscopy, combined with its ability to be integrated on-line with scalable platforms, allows for continuous data acquisition, enabling real-time correlations between process parameters and critical quality attributes.
Herein, we review the role of Raman spectroscopy in cell therapy bioprocessing and discuss how simultaneous measurement of distinct parameters and attributes, such as cell density, viability, metabolites and cell identity biomarkers can streamline on-line monitoring and facilitate adaptive process control. This, in turn, enhances productivity and mitigates process-related risks. We focus on recent advances integrating Raman spectroscopy across various manufacturing stages, from optimizing culture media feeds to monitoring bioprocess dynamics, covering downstream applications such as detection of co-isolated contaminating cells, cryopreservation, and quality control of the drug product. Finally, we discuss the potential of Raman spectroscopy to revolutionize current practices and accelerate the development of advanced therapy medicinal products.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.