{"title":"构建溶酶体相关预后特征,以预测 HNSCC 患者的生存结果并选择合适的药物。","authors":"Bing Cao, Shanshan Gu, Zhisen Shen, Yuna Zhang, Yiming Shen","doi":"10.1002/biof.2140","DOIUrl":null,"url":null,"abstract":"<p><p>Lysosomes are digestive organelles responsible for endocytosis and autophagy. Recently, the malignancy and invasiveness head and neck squamous cell carcinoma (HNSCC) has been increasingly studied with the role of lysosomes. A list of lysosome-related genes were obtained from MSigDB. A Spearman correlation and univariate Cox regression analyses combined with differential expression analysis were conducted to detect differentially expressed lysosome-related genes related to prognosis. The prediction of prognostic signature was evaluated by plotting survival curve, ROC, and by developing a nomogram. Immune subtypes, infiltration of immune cells, GSVA, TIDE, IC<sub>50</sub> of common chemotherapy and targeted therapy, GO, and KEGG function enrichment analyses were carried out to explore the immune microenvironment of the signature. We constructed a lysosome-related prognostic signature that could function as an independent prognostic indicator for patients with HNSCC. High-risk patients were better suited to receive Doxorubicin, Mitomycin C, Pyrimethamine, anti-PD-L1 and anti-CTLA-4 immunotherapy, whereas low-risk patients had sensitivity to Lapatinib. GO functional enrichment analysis showed that prognostic features were strongly associated with epidermis-related functions (e.g., epidermal cell differentiation, epidermal development, and keratinization). In addition, a KEGG function enrichment analysis revealed a potential relationship between the risk assessment model and cardiomyopathy. We constructed a prognostic signature based on lysosome-related genes and successfully predicted the survival outcome of HNSCC patients, which not only provides potential guidance for personalized treatment but also provides a new idea for precision treatment of HNSCC.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of lysosome-related prognostic signature to predict the survival outcomes and selecting suitable drugs for patients with HNSCC.\",\"authors\":\"Bing Cao, Shanshan Gu, Zhisen Shen, Yuna Zhang, Yiming Shen\",\"doi\":\"10.1002/biof.2140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysosomes are digestive organelles responsible for endocytosis and autophagy. Recently, the malignancy and invasiveness head and neck squamous cell carcinoma (HNSCC) has been increasingly studied with the role of lysosomes. A list of lysosome-related genes were obtained from MSigDB. A Spearman correlation and univariate Cox regression analyses combined with differential expression analysis were conducted to detect differentially expressed lysosome-related genes related to prognosis. The prediction of prognostic signature was evaluated by plotting survival curve, ROC, and by developing a nomogram. Immune subtypes, infiltration of immune cells, GSVA, TIDE, IC<sub>50</sub> of common chemotherapy and targeted therapy, GO, and KEGG function enrichment analyses were carried out to explore the immune microenvironment of the signature. We constructed a lysosome-related prognostic signature that could function as an independent prognostic indicator for patients with HNSCC. High-risk patients were better suited to receive Doxorubicin, Mitomycin C, Pyrimethamine, anti-PD-L1 and anti-CTLA-4 immunotherapy, whereas low-risk patients had sensitivity to Lapatinib. GO functional enrichment analysis showed that prognostic features were strongly associated with epidermis-related functions (e.g., epidermal cell differentiation, epidermal development, and keratinization). In addition, a KEGG function enrichment analysis revealed a potential relationship between the risk assessment model and cardiomyopathy. We constructed a prognostic signature based on lysosome-related genes and successfully predicted the survival outcome of HNSCC patients, which not only provides potential guidance for personalized treatment but also provides a new idea for precision treatment of HNSCC.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/biof.2140\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2140","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Construction of lysosome-related prognostic signature to predict the survival outcomes and selecting suitable drugs for patients with HNSCC.
Lysosomes are digestive organelles responsible for endocytosis and autophagy. Recently, the malignancy and invasiveness head and neck squamous cell carcinoma (HNSCC) has been increasingly studied with the role of lysosomes. A list of lysosome-related genes were obtained from MSigDB. A Spearman correlation and univariate Cox regression analyses combined with differential expression analysis were conducted to detect differentially expressed lysosome-related genes related to prognosis. The prediction of prognostic signature was evaluated by plotting survival curve, ROC, and by developing a nomogram. Immune subtypes, infiltration of immune cells, GSVA, TIDE, IC50 of common chemotherapy and targeted therapy, GO, and KEGG function enrichment analyses were carried out to explore the immune microenvironment of the signature. We constructed a lysosome-related prognostic signature that could function as an independent prognostic indicator for patients with HNSCC. High-risk patients were better suited to receive Doxorubicin, Mitomycin C, Pyrimethamine, anti-PD-L1 and anti-CTLA-4 immunotherapy, whereas low-risk patients had sensitivity to Lapatinib. GO functional enrichment analysis showed that prognostic features were strongly associated with epidermis-related functions (e.g., epidermal cell differentiation, epidermal development, and keratinization). In addition, a KEGG function enrichment analysis revealed a potential relationship between the risk assessment model and cardiomyopathy. We constructed a prognostic signature based on lysosome-related genes and successfully predicted the survival outcome of HNSCC patients, which not only provides potential guidance for personalized treatment but also provides a new idea for precision treatment of HNSCC.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.