Kang Yang, Yue Liu, Ji Zhang, Qian Yu, Feng Xu, Jiyuan Liu, Yuting Li, Xiaojie Zhang, Zhiqiang Wang, Ning Wang, Yuezhen Li, Yan Shi, Wan-Jin Chen
{"title":"dmTGS:用于串联重复检测的精确靶向富集长读测序面板。","authors":"Kang Yang, Yue Liu, Ji Zhang, Qian Yu, Feng Xu, Jiyuan Liu, Yuting Li, Xiaojie Zhang, Zhiqiang Wang, Ning Wang, Yuezhen Li, Yan Shi, Wan-Jin Chen","doi":"10.1093/clinchem/hvae164","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tandem repeats (TRs) are abundant in the human genome and associated with repeat expansion disorders. Our study aimed to develop a tandem repeat panel utilizing targeted long-read sequencing to evaluate known TRs associated with these disorders and assess its clinical utility.</p><p><strong>Methods: </strong>We developed a targeted long-read sequencing panel for 70 TR loci, termed dynamic mutation third-generation sequencing (dmTGS), using the PacBio Sequel II platform. We tested 108 samples with suspected repeat expansion disorders and compared the results with conventional molecular methods.</p><p><strong>Results: </strong>For 108 samples, dmTGS achieved an average of 8000 high-fidelity reads per sample, with a mean read length of 4.7 kb and read quality of 99.9%. dmTGS outperformed repeat-primed-PCR and fluorescence amplicon length analysis-PCR in distinguishing expanded from normal alleles and accurately quantifying repeat counts. The method demonstrated high concordance with confirmatory methods (rlinear = 0.991, P < 0.01), and detected mosaicism with sensitivities of 1% for FMR1 CGG premutation and 5% for full mutations. dmTGS successfully identified interruptive motifs in genes that conventional methods had missed. For variable number TRs in the PLIN4 gene, dmTGS identified precise repeat counts and sequence motifs. Screening 57 patients with suspected genetic muscular diseases, dmTGS confirmed repeat expansions in genes such as GIPC1, NOTCH2NLC, NUTM2B-AS1/LOC642361, and DMPK. Additionally, dmTGS detected CCG interruptions in CTG repeats in 8 myotonic dystrophy type 1 patients with detailed characterization.</p><p><strong>Conclusions: </strong>dmTGS accurately detects repeat sizes and interruption motifs associated with repeat expansion disorders and demonstrates superior performance compared to conventional molecular methods.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dmTGS: Precise Targeted Enrichment Long-Read Sequencing Panel for Tandem Repeat Detection.\",\"authors\":\"Kang Yang, Yue Liu, Ji Zhang, Qian Yu, Feng Xu, Jiyuan Liu, Yuting Li, Xiaojie Zhang, Zhiqiang Wang, Ning Wang, Yuezhen Li, Yan Shi, Wan-Jin Chen\",\"doi\":\"10.1093/clinchem/hvae164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tandem repeats (TRs) are abundant in the human genome and associated with repeat expansion disorders. Our study aimed to develop a tandem repeat panel utilizing targeted long-read sequencing to evaluate known TRs associated with these disorders and assess its clinical utility.</p><p><strong>Methods: </strong>We developed a targeted long-read sequencing panel for 70 TR loci, termed dynamic mutation third-generation sequencing (dmTGS), using the PacBio Sequel II platform. We tested 108 samples with suspected repeat expansion disorders and compared the results with conventional molecular methods.</p><p><strong>Results: </strong>For 108 samples, dmTGS achieved an average of 8000 high-fidelity reads per sample, with a mean read length of 4.7 kb and read quality of 99.9%. dmTGS outperformed repeat-primed-PCR and fluorescence amplicon length analysis-PCR in distinguishing expanded from normal alleles and accurately quantifying repeat counts. The method demonstrated high concordance with confirmatory methods (rlinear = 0.991, P < 0.01), and detected mosaicism with sensitivities of 1% for FMR1 CGG premutation and 5% for full mutations. dmTGS successfully identified interruptive motifs in genes that conventional methods had missed. For variable number TRs in the PLIN4 gene, dmTGS identified precise repeat counts and sequence motifs. Screening 57 patients with suspected genetic muscular diseases, dmTGS confirmed repeat expansions in genes such as GIPC1, NOTCH2NLC, NUTM2B-AS1/LOC642361, and DMPK. Additionally, dmTGS detected CCG interruptions in CTG repeats in 8 myotonic dystrophy type 1 patients with detailed characterization.</p><p><strong>Conclusions: </strong>dmTGS accurately detects repeat sizes and interruption motifs associated with repeat expansion disorders and demonstrates superior performance compared to conventional molecular methods.</p>\",\"PeriodicalId\":10690,\"journal\":{\"name\":\"Clinical chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/clinchem/hvae164\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae164","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
dmTGS: Precise Targeted Enrichment Long-Read Sequencing Panel for Tandem Repeat Detection.
Background: Tandem repeats (TRs) are abundant in the human genome and associated with repeat expansion disorders. Our study aimed to develop a tandem repeat panel utilizing targeted long-read sequencing to evaluate known TRs associated with these disorders and assess its clinical utility.
Methods: We developed a targeted long-read sequencing panel for 70 TR loci, termed dynamic mutation third-generation sequencing (dmTGS), using the PacBio Sequel II platform. We tested 108 samples with suspected repeat expansion disorders and compared the results with conventional molecular methods.
Results: For 108 samples, dmTGS achieved an average of 8000 high-fidelity reads per sample, with a mean read length of 4.7 kb and read quality of 99.9%. dmTGS outperformed repeat-primed-PCR and fluorescence amplicon length analysis-PCR in distinguishing expanded from normal alleles and accurately quantifying repeat counts. The method demonstrated high concordance with confirmatory methods (rlinear = 0.991, P < 0.01), and detected mosaicism with sensitivities of 1% for FMR1 CGG premutation and 5% for full mutations. dmTGS successfully identified interruptive motifs in genes that conventional methods had missed. For variable number TRs in the PLIN4 gene, dmTGS identified precise repeat counts and sequence motifs. Screening 57 patients with suspected genetic muscular diseases, dmTGS confirmed repeat expansions in genes such as GIPC1, NOTCH2NLC, NUTM2B-AS1/LOC642361, and DMPK. Additionally, dmTGS detected CCG interruptions in CTG repeats in 8 myotonic dystrophy type 1 patients with detailed characterization.
Conclusions: dmTGS accurately detects repeat sizes and interruption motifs associated with repeat expansion disorders and demonstrates superior performance compared to conventional molecular methods.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.