{"title":"红球菌 PR4 中孤儿 ParA 蛋白在复制和细胞分裂中的作用","authors":"Shabnam Parwin, Preeti Srivastava","doi":"10.1002/jobm.202400428","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria have a very well-regulated mechanism for chromosome segregation and cell division. This process requires a large number of complex proteins to participate and mediate their functionality. Among these complex proteins, ParA and ParB play a vital role for the faithful segregation of chromosome. In Rhodococcus erythropolis PR4, besides the essential parAB operon, there are three orphan copies of parA genes. Here, we report that the orphan ParA2 and ParA3 have distinct roles in the cell cycle. The disruption of the orphan parA2 or parA3 gene resulted in elongated cells. Multiple septal rings and mislocalised septa were observed in ΔparA3 and ΔparA2 mutants, respectively. The subcellular localization of ParA2 revealed a distinct ring- and ribbon-like structure. On the other hand, orphan ParA3 was localized slightly away from the poles. The orphan ParA proteins were found to interact with ParB, the strongest interaction was observed with ParA2. Further, asynchronous replication initiation was observed in ΔparA3 mutants suggesting its role in replication. This is the first report demonstrating the distinct roles of orphan parA genes from Rhodococcus.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400428"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Orphan ParA Proteins in Replication and Cell Division in Rhodococcus erythropolis PR4.\",\"authors\":\"Shabnam Parwin, Preeti Srivastava\",\"doi\":\"10.1002/jobm.202400428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria have a very well-regulated mechanism for chromosome segregation and cell division. This process requires a large number of complex proteins to participate and mediate their functionality. Among these complex proteins, ParA and ParB play a vital role for the faithful segregation of chromosome. In Rhodococcus erythropolis PR4, besides the essential parAB operon, there are three orphan copies of parA genes. Here, we report that the orphan ParA2 and ParA3 have distinct roles in the cell cycle. The disruption of the orphan parA2 or parA3 gene resulted in elongated cells. Multiple septal rings and mislocalised septa were observed in ΔparA3 and ΔparA2 mutants, respectively. The subcellular localization of ParA2 revealed a distinct ring- and ribbon-like structure. On the other hand, orphan ParA3 was localized slightly away from the poles. The orphan ParA proteins were found to interact with ParB, the strongest interaction was observed with ParA2. Further, asynchronous replication initiation was observed in ΔparA3 mutants suggesting its role in replication. This is the first report demonstrating the distinct roles of orphan parA genes from Rhodococcus.</p>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":\" \",\"pages\":\"e2400428\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jobm.202400428\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400428","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Role of Orphan ParA Proteins in Replication and Cell Division in Rhodococcus erythropolis PR4.
Bacteria have a very well-regulated mechanism for chromosome segregation and cell division. This process requires a large number of complex proteins to participate and mediate their functionality. Among these complex proteins, ParA and ParB play a vital role for the faithful segregation of chromosome. In Rhodococcus erythropolis PR4, besides the essential parAB operon, there are three orphan copies of parA genes. Here, we report that the orphan ParA2 and ParA3 have distinct roles in the cell cycle. The disruption of the orphan parA2 or parA3 gene resulted in elongated cells. Multiple septal rings and mislocalised septa were observed in ΔparA3 and ΔparA2 mutants, respectively. The subcellular localization of ParA2 revealed a distinct ring- and ribbon-like structure. On the other hand, orphan ParA3 was localized slightly away from the poles. The orphan ParA proteins were found to interact with ParB, the strongest interaction was observed with ParA2. Further, asynchronous replication initiation was observed in ΔparA3 mutants suggesting its role in replication. This is the first report demonstrating the distinct roles of orphan parA genes from Rhodococcus.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).