用于治疗实体瘤的抗组织因子抗体药物共轭物 XB002 的临床前特征。

IF 5.3 2区 医学 Q1 ONCOLOGY Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI:10.1158/1535-7163.MCT-24-0002
Seema Kantak, Raffaella Faggioni, Allen G Cai, Maryam M Bhatti, Jing Li, Inna Vainshtein, Jackie Cheng, Brian A Mendelsohn, Jacques Gaudreault, Thi-Sau Migone, Jan-Willem Theunissen
{"title":"用于治疗实体瘤的抗组织因子抗体药物共轭物 XB002 的临床前特征。","authors":"Seema Kantak, Raffaella Faggioni, Allen G Cai, Maryam M Bhatti, Jing Li, Inna Vainshtein, Jackie Cheng, Brian A Mendelsohn, Jacques Gaudreault, Thi-Sau Migone, Jan-Willem Theunissen","doi":"10.1158/1535-7163.MCT-24-0002","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue factor (TF) is overexpressed in various cancers, where its expression is generally associated with poor disease outcomes. XB002 is an anti-TF antibody-drug conjugate designed to deliver a cytotoxic payload to TF-expressing tumors while minimizing adverse events related to disruption of TF function, notably bleeding. XB002 is composed of a zovodotin linker-payload conjugated to a monoclonal antibody (clone 25A3) that binds to TF with high affinity (KD = 0.86 nM). In vitro coagulation studies indicated that 25A3 did not interfere with the clotting cascade; at a 100 nM concentration, 25A3 had no effect on activation of coagulation factor X or thrombin generation. XB002 was internalized in TF-expressing cancer cell lines and displayed potent cytotoxic activity at sub-nanomolar concentrations. When evaluated in the HPAF-II xenograft model, XB002 (1.5 mg/kg, IV) given once weekly for 2 weeks induced complete regression with no tumor growth even at 5 weeks after the second dose. In murine patient-derived xenograft models, a single dose of XB002 (10 mg/kg, IV) inhibited tumor growth across multiple cancer models including bladder, cervical, gastric, head and neck squamous cell carcinoma (HNSCC), and non-small cell lung cancer. Further, complete tumor regression was observed in both the cervical and HNSCC models by 30 days post-treatment. In non-human primate models, XB002 showed exposure in the desired range and no evidence of bleeding or neutropenia. Taken together, these data demonstrate potential anti-tumor activity across a spectrum of oncology indications and strongly support its clinical development.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preclinical characterization of XB002, an anti-tissue factor antibody-drug conjugate for the treatment of solid tumors.\",\"authors\":\"Seema Kantak, Raffaella Faggioni, Allen G Cai, Maryam M Bhatti, Jing Li, Inna Vainshtein, Jackie Cheng, Brian A Mendelsohn, Jacques Gaudreault, Thi-Sau Migone, Jan-Willem Theunissen\",\"doi\":\"10.1158/1535-7163.MCT-24-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissue factor (TF) is overexpressed in various cancers, where its expression is generally associated with poor disease outcomes. XB002 is an anti-TF antibody-drug conjugate designed to deliver a cytotoxic payload to TF-expressing tumors while minimizing adverse events related to disruption of TF function, notably bleeding. XB002 is composed of a zovodotin linker-payload conjugated to a monoclonal antibody (clone 25A3) that binds to TF with high affinity (KD = 0.86 nM). In vitro coagulation studies indicated that 25A3 did not interfere with the clotting cascade; at a 100 nM concentration, 25A3 had no effect on activation of coagulation factor X or thrombin generation. XB002 was internalized in TF-expressing cancer cell lines and displayed potent cytotoxic activity at sub-nanomolar concentrations. When evaluated in the HPAF-II xenograft model, XB002 (1.5 mg/kg, IV) given once weekly for 2 weeks induced complete regression with no tumor growth even at 5 weeks after the second dose. In murine patient-derived xenograft models, a single dose of XB002 (10 mg/kg, IV) inhibited tumor growth across multiple cancer models including bladder, cervical, gastric, head and neck squamous cell carcinoma (HNSCC), and non-small cell lung cancer. Further, complete tumor regression was observed in both the cervical and HNSCC models by 30 days post-treatment. In non-human primate models, XB002 showed exposure in the desired range and no evidence of bleeding or neutropenia. Taken together, these data demonstrate potential anti-tumor activity across a spectrum of oncology indications and strongly support its clinical development.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-24-0002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

组织因子(TF)在各种癌症中过度表达,其表达通常与疾病的不良预后有关。XB002 是一种抗 TF 抗体-药物共轭物,旨在向表达 TF 的肿瘤提供细胞毒性有效载荷,同时最大限度地减少与破坏 TF 功能有关的不良反应,尤其是出血。XB002 由佐伏多丁连接体-有效载荷与单克隆抗体(克隆 25A3)结合组成,该抗体与 TF 的结合亲和力极高(KD = 0.86 nM)。体外凝血研究表明,25A3 不会干扰凝血级联反应;在 100 nM 的浓度下,25A3 不会影响凝血因子 X 的活化或凝血酶的生成。XB002 在表达 TF 的癌细胞系中被内化,在亚纳摩尔浓度下显示出强大的细胞毒性活性。在 HPAF-II 异种移植模型中进行评估时,XB002(1.5 毫克/千克,静脉注射)每周给药一次,连续给药 2 周,可诱导肿瘤完全消退,甚至在第二次给药 5 周后仍无肿瘤生长。在小鼠患者来源异种移植模型中,单剂量 XB002(10 毫克/公斤,静脉注射)抑制了多种癌症模型的肿瘤生长,包括膀胱癌、宫颈癌、胃癌、头颈部鳞状细胞癌(HNSCC)和非小细胞肺癌。此外,在宫颈癌和 HNSCC 模型中,治疗后 30 天肿瘤完全消退。在非人灵长类动物模型中,XB002 的暴露量在理想范围内,没有出血或中性粒细胞减少的迹象。总之,这些数据证明了XB002在各种肿瘤适应症中潜在的抗肿瘤活性,为其临床开发提供了有力支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preclinical characterization of XB002, an anti-tissue factor antibody-drug conjugate for the treatment of solid tumors.

Tissue factor (TF) is overexpressed in various cancers, where its expression is generally associated with poor disease outcomes. XB002 is an anti-TF antibody-drug conjugate designed to deliver a cytotoxic payload to TF-expressing tumors while minimizing adverse events related to disruption of TF function, notably bleeding. XB002 is composed of a zovodotin linker-payload conjugated to a monoclonal antibody (clone 25A3) that binds to TF with high affinity (KD = 0.86 nM). In vitro coagulation studies indicated that 25A3 did not interfere with the clotting cascade; at a 100 nM concentration, 25A3 had no effect on activation of coagulation factor X or thrombin generation. XB002 was internalized in TF-expressing cancer cell lines and displayed potent cytotoxic activity at sub-nanomolar concentrations. When evaluated in the HPAF-II xenograft model, XB002 (1.5 mg/kg, IV) given once weekly for 2 weeks induced complete regression with no tumor growth even at 5 weeks after the second dose. In murine patient-derived xenograft models, a single dose of XB002 (10 mg/kg, IV) inhibited tumor growth across multiple cancer models including bladder, cervical, gastric, head and neck squamous cell carcinoma (HNSCC), and non-small cell lung cancer. Further, complete tumor regression was observed in both the cervical and HNSCC models by 30 days post-treatment. In non-human primate models, XB002 showed exposure in the desired range and no evidence of bleeding or neutropenia. Taken together, these data demonstrate potential anti-tumor activity across a spectrum of oncology indications and strongly support its clinical development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
期刊最新文献
A novel designed anti-PD-L1/OX40 bispecific antibody augments both peripheral and tumor-associated immune responses for boosting anti-tumor immunity. Pancreatic CAF-derived Autotaxin (ATX) drives autocrine CTGF expression to modulate pro-tumorigenic signaling. Novel Amanitin-based Antibody Drug Conjugates (ATAC®) targeting TROP2 for the treatment of Pancreatic Cancer. Characteristics of a CCL21-gene modified dendritic cell vaccine utilized for a clinical trial in non-small cell lung cancer. Modeling the acute mucosal toxicity to fractionated radiotherapy combined with the ATM inhibitor WSD0628.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1