Jian Gu, Zhichao Yao, Bruno Lemaitre, Zhaohui Cai, Hongyu Zhang, Xiaoxue Li
{"title":"肠道共生细菌通过维生素 B6 合成途径促进背鳍乳杆菌幼虫的发育。","authors":"Jian Gu, Zhichao Yao, Bruno Lemaitre, Zhaohui Cai, Hongyu Zhang, Xiaoxue Li","doi":"10.1186/s40168-024-01931-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The gut microbiota can facilitate host growth under nutrient-constrained conditions. However, whether this effect is limited to certain bacterial species remains largely unclear, and the relevant underlying mechanisms remain to be thoroughly investigated.</p><p><strong>Results: </strong>We found that the microbiota was required for Bactrocera dorsalis larval growth under poor dietary conditions. Monoassociation experiments revealed that Enterobacteriaceae and some Lactobacilli promoted larval growth. Among the 27 bacterial strains tested, 14 significantly promoted larval development, and the Enterobacteriaceae cloacae isolate exhibited the most obvious promoting effect. A bacterial genome-wide association study (GWAS) revealed that the vitamin B6 synthesis pathway was critical for the promotion of E. cloacae growth. Deletion of pdxA, which is responsible for vitamin B6 biosynthesis, deprived the mutant strains of larval growth-promoting function, indicating that the 4-hydroxythreonine-4-phosphate dehydrogenase(pdxA) gene was crucial for promoting larval growth in E. cloacae. Importantly, supplementation of a poor diet with vitamin B6 successfully rescued the axenic larval growth phenotype of B. dorsalis.</p><p><strong>Conclusion: </strong>Our results suggest that gut microbes promote insect larval growth by providing vitamin B6 under nutrient scarcity conditions in B. dorsalis. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"227"},"PeriodicalIF":13.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533292/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intestinal commensal bacteria promote Bactrocera dorsalis larval development through the vitamin B6 synthesis pathway.\",\"authors\":\"Jian Gu, Zhichao Yao, Bruno Lemaitre, Zhaohui Cai, Hongyu Zhang, Xiaoxue Li\",\"doi\":\"10.1186/s40168-024-01931-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The gut microbiota can facilitate host growth under nutrient-constrained conditions. However, whether this effect is limited to certain bacterial species remains largely unclear, and the relevant underlying mechanisms remain to be thoroughly investigated.</p><p><strong>Results: </strong>We found that the microbiota was required for Bactrocera dorsalis larval growth under poor dietary conditions. Monoassociation experiments revealed that Enterobacteriaceae and some Lactobacilli promoted larval growth. Among the 27 bacterial strains tested, 14 significantly promoted larval development, and the Enterobacteriaceae cloacae isolate exhibited the most obvious promoting effect. A bacterial genome-wide association study (GWAS) revealed that the vitamin B6 synthesis pathway was critical for the promotion of E. cloacae growth. Deletion of pdxA, which is responsible for vitamin B6 biosynthesis, deprived the mutant strains of larval growth-promoting function, indicating that the 4-hydroxythreonine-4-phosphate dehydrogenase(pdxA) gene was crucial for promoting larval growth in E. cloacae. Importantly, supplementation of a poor diet with vitamin B6 successfully rescued the axenic larval growth phenotype of B. dorsalis.</p><p><strong>Conclusion: </strong>Our results suggest that gut microbes promote insect larval growth by providing vitamin B6 under nutrient scarcity conditions in B. dorsalis. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"12 1\",\"pages\":\"227\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533292/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01931-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01931-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Intestinal commensal bacteria promote Bactrocera dorsalis larval development through the vitamin B6 synthesis pathway.
Background: The gut microbiota can facilitate host growth under nutrient-constrained conditions. However, whether this effect is limited to certain bacterial species remains largely unclear, and the relevant underlying mechanisms remain to be thoroughly investigated.
Results: We found that the microbiota was required for Bactrocera dorsalis larval growth under poor dietary conditions. Monoassociation experiments revealed that Enterobacteriaceae and some Lactobacilli promoted larval growth. Among the 27 bacterial strains tested, 14 significantly promoted larval development, and the Enterobacteriaceae cloacae isolate exhibited the most obvious promoting effect. A bacterial genome-wide association study (GWAS) revealed that the vitamin B6 synthesis pathway was critical for the promotion of E. cloacae growth. Deletion of pdxA, which is responsible for vitamin B6 biosynthesis, deprived the mutant strains of larval growth-promoting function, indicating that the 4-hydroxythreonine-4-phosphate dehydrogenase(pdxA) gene was crucial for promoting larval growth in E. cloacae. Importantly, supplementation of a poor diet with vitamin B6 successfully rescued the axenic larval growth phenotype of B. dorsalis.
Conclusion: Our results suggest that gut microbes promote insect larval growth by providing vitamin B6 under nutrient scarcity conditions in B. dorsalis. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.