Maria Inês Farrim , Andreia Gomes , Regina Menezes , Dragan Milenkovic
{"title":"(多)酚与糖尿病:通过系统的多基因组分析从影响到机制。","authors":"Maria Inês Farrim , Andreia Gomes , Regina Menezes , Dragan Milenkovic","doi":"10.1016/j.arr.2024.102557","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes is a chronic and multifactorial metabolic disease with increasing numbers of patients worldwide, characterized by loss of pancreatic β-cell mass and function with subsequent insulin deficiency. Thus, restoring functional β-cells could significantly impact disease management. The beneficial effects of natural compounds, namely (poly)phenols, in diabetes have gained increasing interest, due to their pleiotropic actions in several cellular processes, including in glucose homeostasis. These compounds are able to modulate nutri(epi)genomic mechanisms by interacting with cell signaling proteins and transcription factors (TFs). However, the underlying mechanisms of action, particularly of (poly)phenol metabolites resulting from digestion and colonic microbiota action, are yet to be elucidated. This study explored the multigenomic effects of (poly)phenols and their metabolites to uncover modulatory networks and mechanisms linked to diabetes. Published studies on gene expression alterations modulated by (poly)phenolic compounds or (poly)phenol-rich extracts were integrated, encompassing studies conducted on individuals with diabetes, animal models mimicking diabetes, and pancreatic β-cell lines. Bioinformatic analysis identified differentially expressed genes and potential regulatory factors, with roles in cell signaling pathways (FoxO, AMPK, p53), endocrine resistance, immune system pathways, apoptosis, and cellular senescence. Interestingly, in silico 3D docking analyses revealed potential interactions between key TFs (FOXO1, PPARG, SIRT1, and MAFA) and some metabolites. Apigenin, luteolin, and naringenin glucuronide forms showed the best binding capacity to SIRT1. The integrative analysis of (poly)phenol metabolites data highlights the potential of these molecules for nutraceutical/pharmaceutical development aimed at managing diabetes whose incidence increases with age.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"102 ","pages":"Article 102557"},"PeriodicalIF":12.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Poly)phenols and diabetes: From effects to mechanisms by systematic multigenomic analysis\",\"authors\":\"Maria Inês Farrim , Andreia Gomes , Regina Menezes , Dragan Milenkovic\",\"doi\":\"10.1016/j.arr.2024.102557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetes is a chronic and multifactorial metabolic disease with increasing numbers of patients worldwide, characterized by loss of pancreatic β-cell mass and function with subsequent insulin deficiency. Thus, restoring functional β-cells could significantly impact disease management. The beneficial effects of natural compounds, namely (poly)phenols, in diabetes have gained increasing interest, due to their pleiotropic actions in several cellular processes, including in glucose homeostasis. These compounds are able to modulate nutri(epi)genomic mechanisms by interacting with cell signaling proteins and transcription factors (TFs). However, the underlying mechanisms of action, particularly of (poly)phenol metabolites resulting from digestion and colonic microbiota action, are yet to be elucidated. This study explored the multigenomic effects of (poly)phenols and their metabolites to uncover modulatory networks and mechanisms linked to diabetes. Published studies on gene expression alterations modulated by (poly)phenolic compounds or (poly)phenol-rich extracts were integrated, encompassing studies conducted on individuals with diabetes, animal models mimicking diabetes, and pancreatic β-cell lines. Bioinformatic analysis identified differentially expressed genes and potential regulatory factors, with roles in cell signaling pathways (FoxO, AMPK, p53), endocrine resistance, immune system pathways, apoptosis, and cellular senescence. Interestingly, in silico 3D docking analyses revealed potential interactions between key TFs (FOXO1, PPARG, SIRT1, and MAFA) and some metabolites. Apigenin, luteolin, and naringenin glucuronide forms showed the best binding capacity to SIRT1. The integrative analysis of (poly)phenol metabolites data highlights the potential of these molecules for nutraceutical/pharmaceutical development aimed at managing diabetes whose incidence increases with age.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"102 \",\"pages\":\"Article 102557\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163724003751\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724003751","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
(Poly)phenols and diabetes: From effects to mechanisms by systematic multigenomic analysis
Diabetes is a chronic and multifactorial metabolic disease with increasing numbers of patients worldwide, characterized by loss of pancreatic β-cell mass and function with subsequent insulin deficiency. Thus, restoring functional β-cells could significantly impact disease management. The beneficial effects of natural compounds, namely (poly)phenols, in diabetes have gained increasing interest, due to their pleiotropic actions in several cellular processes, including in glucose homeostasis. These compounds are able to modulate nutri(epi)genomic mechanisms by interacting with cell signaling proteins and transcription factors (TFs). However, the underlying mechanisms of action, particularly of (poly)phenol metabolites resulting from digestion and colonic microbiota action, are yet to be elucidated. This study explored the multigenomic effects of (poly)phenols and their metabolites to uncover modulatory networks and mechanisms linked to diabetes. Published studies on gene expression alterations modulated by (poly)phenolic compounds or (poly)phenol-rich extracts were integrated, encompassing studies conducted on individuals with diabetes, animal models mimicking diabetes, and pancreatic β-cell lines. Bioinformatic analysis identified differentially expressed genes and potential regulatory factors, with roles in cell signaling pathways (FoxO, AMPK, p53), endocrine resistance, immune system pathways, apoptosis, and cellular senescence. Interestingly, in silico 3D docking analyses revealed potential interactions between key TFs (FOXO1, PPARG, SIRT1, and MAFA) and some metabolites. Apigenin, luteolin, and naringenin glucuronide forms showed the best binding capacity to SIRT1. The integrative analysis of (poly)phenol metabolites data highlights the potential of these molecules for nutraceutical/pharmaceutical development aimed at managing diabetes whose incidence increases with age.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.