{"title":"结合使用生物调查、生物色谱和硅学方法来解决徽章及其衍生物的毒性问题。","authors":"Ilaria Neri , Marialuisa Piccolo , Giacomo Russo , Maria Grazia Ferraro , Vincenzo Marotta , Rita Santamaria , Lucia Grumetto","doi":"10.1016/j.chemosphere.2024.143640","DOIUrl":null,"url":null,"abstract":"<div><div>Bisphenol A diglycidyl ether (BADGE) is a pre-polymer of BPA widely used in manufacturing of epoxy resins and plastics; due to its high reactivity, unintended by-products, such as chlorinated and hydrolysed products, can reach the human body. This research integrates multiple approaches such as computational predictions, chromatographic experiments, biological assays, and human biomonitoring studies to comprehensively evaluate the toxicological profiles of the parent compound and its derivatives. <em>In silico</em> predictions were first utilized to estimate the toxicological properties and interactions of BADGE derivatives, providing insights into their bioactivity. Biomimetic liquid chromatography was then used to simulate membrane permeability and biodistribution, predicting how these chemicals might cross biological membranes and accumulate in tissues. <em>In vitro</em> experiments assessed cellular toxicity through viability assays, identifying BADGE·2HCl as the most cytotoxic derivative. Reactive Oxygen Species (ROS) production evaluation was performed to assess the oxidative stress induced by these compounds, revealing elevated ROS levels in cells exposed to BADGE and BADGE·2HCl with a consequent significant oxidative damage. Similarly, BADGE and BADGE·2HCl were able to induce cellular death by apoptosis activation. Human serum analysis in a population sample (N = 96), showed BADGE·2H<sub>2</sub>O as the most frequently detected metabolite, indicating a considerable human exposure and metabolic processes. The findings highlight a toxicity of BADGE derivatives similar to that of BADGE; BADGE·2HCl resulted particularly cytotoxic and BADGE·2H<sub>2</sub>O is the most frequent detected in human serum, underscoring the need for regulatory measures to mitigate potential health risks associated with these compounds.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143640"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The combined use of biological investigations, bio chromatographic and in silico methods to solve the puzzle of badge and its derivative's toxicity\",\"authors\":\"Ilaria Neri , Marialuisa Piccolo , Giacomo Russo , Maria Grazia Ferraro , Vincenzo Marotta , Rita Santamaria , Lucia Grumetto\",\"doi\":\"10.1016/j.chemosphere.2024.143640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bisphenol A diglycidyl ether (BADGE) is a pre-polymer of BPA widely used in manufacturing of epoxy resins and plastics; due to its high reactivity, unintended by-products, such as chlorinated and hydrolysed products, can reach the human body. This research integrates multiple approaches such as computational predictions, chromatographic experiments, biological assays, and human biomonitoring studies to comprehensively evaluate the toxicological profiles of the parent compound and its derivatives. <em>In silico</em> predictions were first utilized to estimate the toxicological properties and interactions of BADGE derivatives, providing insights into their bioactivity. Biomimetic liquid chromatography was then used to simulate membrane permeability and biodistribution, predicting how these chemicals might cross biological membranes and accumulate in tissues. <em>In vitro</em> experiments assessed cellular toxicity through viability assays, identifying BADGE·2HCl as the most cytotoxic derivative. Reactive Oxygen Species (ROS) production evaluation was performed to assess the oxidative stress induced by these compounds, revealing elevated ROS levels in cells exposed to BADGE and BADGE·2HCl with a consequent significant oxidative damage. Similarly, BADGE and BADGE·2HCl were able to induce cellular death by apoptosis activation. Human serum analysis in a population sample (N = 96), showed BADGE·2H<sub>2</sub>O as the most frequently detected metabolite, indicating a considerable human exposure and metabolic processes. The findings highlight a toxicity of BADGE derivatives similar to that of BADGE; BADGE·2HCl resulted particularly cytotoxic and BADGE·2H<sub>2</sub>O is the most frequent detected in human serum, underscoring the need for regulatory measures to mitigate potential health risks associated with these compounds.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"367 \",\"pages\":\"Article 143640\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524025402\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025402","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The combined use of biological investigations, bio chromatographic and in silico methods to solve the puzzle of badge and its derivative's toxicity
Bisphenol A diglycidyl ether (BADGE) is a pre-polymer of BPA widely used in manufacturing of epoxy resins and plastics; due to its high reactivity, unintended by-products, such as chlorinated and hydrolysed products, can reach the human body. This research integrates multiple approaches such as computational predictions, chromatographic experiments, biological assays, and human biomonitoring studies to comprehensively evaluate the toxicological profiles of the parent compound and its derivatives. In silico predictions were first utilized to estimate the toxicological properties and interactions of BADGE derivatives, providing insights into their bioactivity. Biomimetic liquid chromatography was then used to simulate membrane permeability and biodistribution, predicting how these chemicals might cross biological membranes and accumulate in tissues. In vitro experiments assessed cellular toxicity through viability assays, identifying BADGE·2HCl as the most cytotoxic derivative. Reactive Oxygen Species (ROS) production evaluation was performed to assess the oxidative stress induced by these compounds, revealing elevated ROS levels in cells exposed to BADGE and BADGE·2HCl with a consequent significant oxidative damage. Similarly, BADGE and BADGE·2HCl were able to induce cellular death by apoptosis activation. Human serum analysis in a population sample (N = 96), showed BADGE·2H2O as the most frequently detected metabolite, indicating a considerable human exposure and metabolic processes. The findings highlight a toxicity of BADGE derivatives similar to that of BADGE; BADGE·2HCl resulted particularly cytotoxic and BADGE·2H2O is the most frequent detected in human serum, underscoring the need for regulatory measures to mitigate potential health risks associated with these compounds.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.