克服窄带隙过氧化物的开路电压损耗,实现全过氧化物串联太阳能电池

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-10-23 DOI:10.1021/acsmaterialslett.4c0169910.1021/acsmaterialslett.4c01699
Yekitwork Abebe Temitmie, Muhammad Irfan Haider, Daniele T. Cuzzupè, Lucia V. Mercaldo, Stefan Kraner, Paola Delli Veneri, Amare Benor, Azhar Fakharuddin* and Lukas Schmidt-Mende*, 
{"title":"克服窄带隙过氧化物的开路电压损耗,实现全过氧化物串联太阳能电池","authors":"Yekitwork Abebe Temitmie,&nbsp;Muhammad Irfan Haider,&nbsp;Daniele T. Cuzzupè,&nbsp;Lucia V. Mercaldo,&nbsp;Stefan Kraner,&nbsp;Paola Delli Veneri,&nbsp;Amare Benor,&nbsp;Azhar Fakharuddin* and Lukas Schmidt-Mende*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0169910.1021/acsmaterialslett.4c01699","DOIUrl":null,"url":null,"abstract":"<p >Narrow-bandgap (NBG) perovskite solar cells based on tin–lead mixed perovskite absorbers suffer from significant open-circuit voltage (<i>V</i><sub>OC</sub>) losses due primarily to a high defect density and charge carrier recombination at the device interfaces. In this study, the <i>V</i><sub>OC</sub> losses in NBG perovskite single junction cells (<i>E</i><sub>g</sub> = 1.21 eV) are addressed. The optimized NBG subcell is then used to fabricate highly efficient all-perovskite tandem solar cells (TSCs). The improvement in the <i>V</i><sub>OC</sub> is achieved via the addition of a thin poly(triarylamine) interlayer between the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)-based hole transport layer (HTL) and the NBG perovskite. The optimal bilayer HTL results in a champion power conversion efficiency (PCE) of 20.3%, compared to 17.8% of the PEDOT:PSS-based control device. The <i>V</i><sub>OC</sub> improvement of the single-junction NBG cell is also successfully transferred to all-perovskite TSC, resulting in a high <i>V</i><sub>OC</sub> of 2.00 V and a PCE of 25.1%.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 11","pages":"5190–5198 5190–5198"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c01699","citationCount":"0","resultStr":"{\"title\":\"Overcoming the Open-Circuit Voltage Losses in Narrow Bandgap Perovskites for All-Perovskite Tandem Solar Cells\",\"authors\":\"Yekitwork Abebe Temitmie,&nbsp;Muhammad Irfan Haider,&nbsp;Daniele T. Cuzzupè,&nbsp;Lucia V. Mercaldo,&nbsp;Stefan Kraner,&nbsp;Paola Delli Veneri,&nbsp;Amare Benor,&nbsp;Azhar Fakharuddin* and Lukas Schmidt-Mende*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0169910.1021/acsmaterialslett.4c01699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Narrow-bandgap (NBG) perovskite solar cells based on tin–lead mixed perovskite absorbers suffer from significant open-circuit voltage (<i>V</i><sub>OC</sub>) losses due primarily to a high defect density and charge carrier recombination at the device interfaces. In this study, the <i>V</i><sub>OC</sub> losses in NBG perovskite single junction cells (<i>E</i><sub>g</sub> = 1.21 eV) are addressed. The optimized NBG subcell is then used to fabricate highly efficient all-perovskite tandem solar cells (TSCs). The improvement in the <i>V</i><sub>OC</sub> is achieved via the addition of a thin poly(triarylamine) interlayer between the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)-based hole transport layer (HTL) and the NBG perovskite. The optimal bilayer HTL results in a champion power conversion efficiency (PCE) of 20.3%, compared to 17.8% of the PEDOT:PSS-based control device. The <i>V</i><sub>OC</sub> improvement of the single-junction NBG cell is also successfully transferred to all-perovskite TSC, resulting in a high <i>V</i><sub>OC</sub> of 2.00 V and a PCE of 25.1%.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"6 11\",\"pages\":\"5190–5198 5190–5198\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c01699\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01699\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01699","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于锡铅混合包晶石吸收体的窄带隙(NBG)包晶石太阳能电池存在显著的开路电压(VOC)损耗,这主要是由于器件界面上的高缺陷密度和电荷载流子重组造成的。本研究探讨了 NBG 包晶单结电池(Eg = 1.21 eV)的 VOC 损耗问题。优化后的 NBG 子电池被用于制造高效的全过氧化物串联太阳能电池 (TSC)。通过在聚(3,4-亚乙二氧基噻吩)聚(苯乙烯磺酸)(PEDOT:PSS)为基础的空穴传输层(HTL)和 NBG 过氧化物之间添加一层薄的聚(三芳基胺)夹层,实现了 VOC 的改善。最佳双层 HTL 使冠军功率转换效率 (PCE) 达到 20.3%,而基于 PEDOT:PSS 的控制器件的转换效率仅为 17.8%。单结 NBG 电池的 VOC 改进也成功地转移到了全过氧化物 TSC 上,从而实现了 2.00 V 的高 VOC 和 25.1% 的 PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overcoming the Open-Circuit Voltage Losses in Narrow Bandgap Perovskites for All-Perovskite Tandem Solar Cells

Narrow-bandgap (NBG) perovskite solar cells based on tin–lead mixed perovskite absorbers suffer from significant open-circuit voltage (VOC) losses due primarily to a high defect density and charge carrier recombination at the device interfaces. In this study, the VOC losses in NBG perovskite single junction cells (Eg = 1.21 eV) are addressed. The optimized NBG subcell is then used to fabricate highly efficient all-perovskite tandem solar cells (TSCs). The improvement in the VOC is achieved via the addition of a thin poly(triarylamine) interlayer between the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)-based hole transport layer (HTL) and the NBG perovskite. The optimal bilayer HTL results in a champion power conversion efficiency (PCE) of 20.3%, compared to 17.8% of the PEDOT:PSS-based control device. The VOC improvement of the single-junction NBG cell is also successfully transferred to all-perovskite TSC, resulting in a high VOC of 2.00 V and a PCE of 25.1%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Excitation Photon Energy-Dependent Carrier Multiplication in Graphite Combining Electron Microscopy and Elemental Mapping for the Investigation of Zeolite Crystallization Multiscale Covalent Organic Framework (COF) Films for Task-Specific Sensing in Multicomponent Gases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1