用于绿色制氢的增值电解材料

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-10-03 DOI:10.1021/acsmaterialslett.4c0117310.1021/acsmaterialslett.4c01173
Endalkachew Asefa Moges, Keseven Lakshmanan, Chia-Yu Chang, Wei-Sheng Liao, Fikiru Temesgen Angerasa, Woldesenbet Bafe Dilebo, Habib Gemechu Edao, Kirubel Teshome Tadele, Dessalew Dagnew Alemayehu, Baru Debtera Bejena, Chemeda Barasa Guta, Chun-Chi Chang, Meng-Che Tsai, Wei-Nien Su* and Bing Joe Hwang*, 
{"title":"用于绿色制氢的增值电解材料","authors":"Endalkachew Asefa Moges,&nbsp;Keseven Lakshmanan,&nbsp;Chia-Yu Chang,&nbsp;Wei-Sheng Liao,&nbsp;Fikiru Temesgen Angerasa,&nbsp;Woldesenbet Bafe Dilebo,&nbsp;Habib Gemechu Edao,&nbsp;Kirubel Teshome Tadele,&nbsp;Dessalew Dagnew Alemayehu,&nbsp;Baru Debtera Bejena,&nbsp;Chemeda Barasa Guta,&nbsp;Chun-Chi Chang,&nbsp;Meng-Che Tsai,&nbsp;Wei-Nien Su* and Bing Joe Hwang*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0117310.1021/acsmaterialslett.4c01173","DOIUrl":null,"url":null,"abstract":"<p >The increasing energy consumption and resulting environmental pollution present a major challenge for society. This has led to a global demand for ultrapure energy and valuable chemical products. Therefore, a sustainable and ecofriendly approach to green energy production is essential. Recently, combining anodic oxidation reactions with hydrogen evolution reactions has shown potential in transforming low-grade molecules such as alcohols (such as ethanol, methanol, ethylene glycol, and glycerol), iodide, and biomass-derived compounds. This method could replace the sluggish oxygen evolution reaction in sustainable electrochemical energy systems. This review summarizes electro-oxidation reactions that produce green hydrogen with low electricity consumption and valuable chemicals from inexpensive small-molecule oxidants. It also explores rational design approaches for catalysts, including late transition metals on carbon-based supports, metal oxides, surface engineering, and interface engineering. Finally, the current challenges and future perspectives for developing material catalysts for value-added electrolysis technologies (power-to-green hydrogen production).</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c01173","citationCount":"0","resultStr":"{\"title\":\"Materials of Value-Added Electrolysis for Green Hydrogen Production\",\"authors\":\"Endalkachew Asefa Moges,&nbsp;Keseven Lakshmanan,&nbsp;Chia-Yu Chang,&nbsp;Wei-Sheng Liao,&nbsp;Fikiru Temesgen Angerasa,&nbsp;Woldesenbet Bafe Dilebo,&nbsp;Habib Gemechu Edao,&nbsp;Kirubel Teshome Tadele,&nbsp;Dessalew Dagnew Alemayehu,&nbsp;Baru Debtera Bejena,&nbsp;Chemeda Barasa Guta,&nbsp;Chun-Chi Chang,&nbsp;Meng-Che Tsai,&nbsp;Wei-Nien Su* and Bing Joe Hwang*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0117310.1021/acsmaterialslett.4c01173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing energy consumption and resulting environmental pollution present a major challenge for society. This has led to a global demand for ultrapure energy and valuable chemical products. Therefore, a sustainable and ecofriendly approach to green energy production is essential. Recently, combining anodic oxidation reactions with hydrogen evolution reactions has shown potential in transforming low-grade molecules such as alcohols (such as ethanol, methanol, ethylene glycol, and glycerol), iodide, and biomass-derived compounds. This method could replace the sluggish oxygen evolution reaction in sustainable electrochemical energy systems. This review summarizes electro-oxidation reactions that produce green hydrogen with low electricity consumption and valuable chemicals from inexpensive small-molecule oxidants. It also explores rational design approaches for catalysts, including late transition metals on carbon-based supports, metal oxides, surface engineering, and interface engineering. Finally, the current challenges and future perspectives for developing material catalysts for value-added electrolysis technologies (power-to-green hydrogen production).</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c01173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01173\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

日益增长的能源消耗和由此造成的环境污染给社会带来了重大挑战。这导致了全球对超纯能源和有价值化学产品的需求。因此,必须采用可持续和生态友好的方法来生产绿色能源。最近,将阳极氧化反应与氢进化反应相结合,在转化低品位分子(如乙醇、甲醇、乙二醇和甘油)、碘化物和生物质衍生化合物方面显示出了潜力。这种方法可以取代可持续电化学能源系统中缓慢的氧进化反应。本综述概述了利用廉价的小分子氧化剂生产绿色氢气的电氧化反应,该反应耗电量低,并能产生有价值的化学物质。综述还探讨了催化剂的合理设计方法,包括碳基载体上的后期过渡金属、金属氧化物、表面工程和界面工程。最后,介绍了为增值电解技术(从电力到绿色制氢)开发材料催化剂的当前挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Materials of Value-Added Electrolysis for Green Hydrogen Production

The increasing energy consumption and resulting environmental pollution present a major challenge for society. This has led to a global demand for ultrapure energy and valuable chemical products. Therefore, a sustainable and ecofriendly approach to green energy production is essential. Recently, combining anodic oxidation reactions with hydrogen evolution reactions has shown potential in transforming low-grade molecules such as alcohols (such as ethanol, methanol, ethylene glycol, and glycerol), iodide, and biomass-derived compounds. This method could replace the sluggish oxygen evolution reaction in sustainable electrochemical energy systems. This review summarizes electro-oxidation reactions that produce green hydrogen with low electricity consumption and valuable chemicals from inexpensive small-molecule oxidants. It also explores rational design approaches for catalysts, including late transition metals on carbon-based supports, metal oxides, surface engineering, and interface engineering. Finally, the current challenges and future perspectives for developing material catalysts for value-added electrolysis technologies (power-to-green hydrogen production).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1