Lu Jianqiang , Luo Haoxuan , Yu Chaoran , Liang Xiao , Huang Jiewei , Wu Haiwei , Wang Liang , Yang Caijuan
{"title":"茶芽 DG:基于动态检测头和自适应损失函数的轻量级茶芽检测模型","authors":"Lu Jianqiang , Luo Haoxuan , Yu Chaoran , Liang Xiao , Huang Jiewei , Wu Haiwei , Wang Liang , Yang Caijuan","doi":"10.1016/j.compag.2024.109522","DOIUrl":null,"url":null,"abstract":"<div><div>Tea bud detection plays a crucial role in early-stage tea production estimation and robotic harvesting, significantly advancing the integration of computer vision and agriculture. Currently, tea bud detection faces several challenges such as reduced accuracy due to high background similarity, and the large size and parameter count of the models, which hinder deployment on mobile devices. To address these issues, this study introduces the lightweight Tea Bud DG model, characterized by the following features: 1) The model employs a Dynamic Head (DyHead), which enhances tea bud feature extraction through three types of perceptual attention mechanisms—scale, spatial, and task awareness. Scale awareness enables the model to adapt to objects of varying sizes; spatial awareness focuses on discriminative regions to distinguish tea buds against complex backgrounds; task awareness optimizes feature channels for specific tasks, such as classification or localization of tea buds. 2) A lightweight C3ghost module is designed, initially generating basic feature maps with fewer filters, followed by simple linear operations (e.g., translation or rotation) to create additional “ghost” feature maps, thus reducing the parameter count and model size, facilitating deployment on lightweight mobile devices. 3) By introducing the α-CIoU loss function with the parameter α, the loss and gradient of objects with different IoU scores can be adaptively reweighted by adjusting the α parameter. This approach emphasizes objects with higher IoU, enhancing the ability to identify tea buds in environments with high background similarity. The use of α-CIoU focuses on accurately differentiating tea buds from surrounding leaves, improving detection performance. The experimental results show that compared with YOLOv5s, the Tea Bud DG model reduces the model size by 31.41 % and the number of parameters by 32.21 %. Compared with YOLOv7_tiny, the size and parameters are reduced by 18.94 % and 23.84 %, respectively. It achieved improvements in [email protected] by 3 %, 3.9 %, and 5.1 %, and in [email protected]_0.95 by 2.6 %, 3.2 %, and 4 % compared with YOLOv5s, YOLOv8s, and YOLOv9s, respectively. The Tea Bud DG model estimates the tea yield with an error range of 10 % to 16 %, providing valuable data support for tea plantation management.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109522"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tea bud DG: A lightweight tea bud detection model based on dynamic detection head and adaptive loss function\",\"authors\":\"Lu Jianqiang , Luo Haoxuan , Yu Chaoran , Liang Xiao , Huang Jiewei , Wu Haiwei , Wang Liang , Yang Caijuan\",\"doi\":\"10.1016/j.compag.2024.109522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tea bud detection plays a crucial role in early-stage tea production estimation and robotic harvesting, significantly advancing the integration of computer vision and agriculture. Currently, tea bud detection faces several challenges such as reduced accuracy due to high background similarity, and the large size and parameter count of the models, which hinder deployment on mobile devices. To address these issues, this study introduces the lightweight Tea Bud DG model, characterized by the following features: 1) The model employs a Dynamic Head (DyHead), which enhances tea bud feature extraction through three types of perceptual attention mechanisms—scale, spatial, and task awareness. Scale awareness enables the model to adapt to objects of varying sizes; spatial awareness focuses on discriminative regions to distinguish tea buds against complex backgrounds; task awareness optimizes feature channels for specific tasks, such as classification or localization of tea buds. 2) A lightweight C3ghost module is designed, initially generating basic feature maps with fewer filters, followed by simple linear operations (e.g., translation or rotation) to create additional “ghost” feature maps, thus reducing the parameter count and model size, facilitating deployment on lightweight mobile devices. 3) By introducing the α-CIoU loss function with the parameter α, the loss and gradient of objects with different IoU scores can be adaptively reweighted by adjusting the α parameter. This approach emphasizes objects with higher IoU, enhancing the ability to identify tea buds in environments with high background similarity. The use of α-CIoU focuses on accurately differentiating tea buds from surrounding leaves, improving detection performance. The experimental results show that compared with YOLOv5s, the Tea Bud DG model reduces the model size by 31.41 % and the number of parameters by 32.21 %. Compared with YOLOv7_tiny, the size and parameters are reduced by 18.94 % and 23.84 %, respectively. It achieved improvements in [email protected] by 3 %, 3.9 %, and 5.1 %, and in [email protected]_0.95 by 2.6 %, 3.2 %, and 4 % compared with YOLOv5s, YOLOv8s, and YOLOv9s, respectively. The Tea Bud DG model estimates the tea yield with an error range of 10 % to 16 %, providing valuable data support for tea plantation management.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"227 \",\"pages\":\"Article 109522\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016816992400913X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992400913X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tea bud DG: A lightweight tea bud detection model based on dynamic detection head and adaptive loss function
Tea bud detection plays a crucial role in early-stage tea production estimation and robotic harvesting, significantly advancing the integration of computer vision and agriculture. Currently, tea bud detection faces several challenges such as reduced accuracy due to high background similarity, and the large size and parameter count of the models, which hinder deployment on mobile devices. To address these issues, this study introduces the lightweight Tea Bud DG model, characterized by the following features: 1) The model employs a Dynamic Head (DyHead), which enhances tea bud feature extraction through three types of perceptual attention mechanisms—scale, spatial, and task awareness. Scale awareness enables the model to adapt to objects of varying sizes; spatial awareness focuses on discriminative regions to distinguish tea buds against complex backgrounds; task awareness optimizes feature channels for specific tasks, such as classification or localization of tea buds. 2) A lightweight C3ghost module is designed, initially generating basic feature maps with fewer filters, followed by simple linear operations (e.g., translation or rotation) to create additional “ghost” feature maps, thus reducing the parameter count and model size, facilitating deployment on lightweight mobile devices. 3) By introducing the α-CIoU loss function with the parameter α, the loss and gradient of objects with different IoU scores can be adaptively reweighted by adjusting the α parameter. This approach emphasizes objects with higher IoU, enhancing the ability to identify tea buds in environments with high background similarity. The use of α-CIoU focuses on accurately differentiating tea buds from surrounding leaves, improving detection performance. The experimental results show that compared with YOLOv5s, the Tea Bud DG model reduces the model size by 31.41 % and the number of parameters by 32.21 %. Compared with YOLOv7_tiny, the size and parameters are reduced by 18.94 % and 23.84 %, respectively. It achieved improvements in [email protected] by 3 %, 3.9 %, and 5.1 %, and in [email protected]_0.95 by 2.6 %, 3.2 %, and 4 % compared with YOLOv5s, YOLOv8s, and YOLOv9s, respectively. The Tea Bud DG model estimates the tea yield with an error range of 10 % to 16 %, providing valuable data support for tea plantation management.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.