Khairul Anwar Mohamad Said , M.P.M. Subasinghe , Md Rezaur Rahman , Ibrahim Yakub , Sinin Hamdan
{"title":"用于苯酚吸附研究的 PES 膜中的磁驱动颗粒迁移:等温线和动力学模型视角","authors":"Khairul Anwar Mohamad Said , M.P.M. Subasinghe , Md Rezaur Rahman , Ibrahim Yakub , Sinin Hamdan","doi":"10.1016/j.chphi.2024.100766","DOIUrl":null,"url":null,"abstract":"<div><div>Particle migration within the membrane was induced by magnetic exposure. For investigating the effect of magnetic on membrane structure, the adsorbent composition was varied between 3, 12, and 30wt%. The migrated zinc ferrite will accumulate near the membrane surface, and through different zinc ferrite compositions, the membrane structure is affected based on microscopy imaging. The phenol adsorption performance was conducted at different phenol concentrations; 5, 13, 30, 40, and 50 mg/L. Adsorption study reveals that initial concentration has influenced the phenol removal and can be ranked as follows (to the left has higher removal): 5>30>50>40>13 mg/L. Different zinc ferrite composition shows that the higher the ZnFe wt%, the better the phenol removal and listed as follows(to the left has higher removal): 3>12>30 wt%. The isotherm model discloses a high adsorption rate for normal membrane, although a similar number of adsorption sites (∼1 site) were utilized throughout the adsorption test. The kinetic model reveals that the magnetic induce membrane has a higher maximum adsorption capacity, a thin saturated monolayer with thrice more adsorption.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective\",\"authors\":\"Khairul Anwar Mohamad Said , M.P.M. Subasinghe , Md Rezaur Rahman , Ibrahim Yakub , Sinin Hamdan\",\"doi\":\"10.1016/j.chphi.2024.100766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Particle migration within the membrane was induced by magnetic exposure. For investigating the effect of magnetic on membrane structure, the adsorbent composition was varied between 3, 12, and 30wt%. The migrated zinc ferrite will accumulate near the membrane surface, and through different zinc ferrite compositions, the membrane structure is affected based on microscopy imaging. The phenol adsorption performance was conducted at different phenol concentrations; 5, 13, 30, 40, and 50 mg/L. Adsorption study reveals that initial concentration has influenced the phenol removal and can be ranked as follows (to the left has higher removal): 5>30>50>40>13 mg/L. Different zinc ferrite composition shows that the higher the ZnFe wt%, the better the phenol removal and listed as follows(to the left has higher removal): 3>12>30 wt%. The isotherm model discloses a high adsorption rate for normal membrane, although a similar number of adsorption sites (∼1 site) were utilized throughout the adsorption test. The kinetic model reveals that the magnetic induce membrane has a higher maximum adsorption capacity, a thin saturated monolayer with thrice more adsorption.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424003104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective
Particle migration within the membrane was induced by magnetic exposure. For investigating the effect of magnetic on membrane structure, the adsorbent composition was varied between 3, 12, and 30wt%. The migrated zinc ferrite will accumulate near the membrane surface, and through different zinc ferrite compositions, the membrane structure is affected based on microscopy imaging. The phenol adsorption performance was conducted at different phenol concentrations; 5, 13, 30, 40, and 50 mg/L. Adsorption study reveals that initial concentration has influenced the phenol removal and can be ranked as follows (to the left has higher removal): 5>30>50>40>13 mg/L. Different zinc ferrite composition shows that the higher the ZnFe wt%, the better the phenol removal and listed as follows(to the left has higher removal): 3>12>30 wt%. The isotherm model discloses a high adsorption rate for normal membrane, although a similar number of adsorption sites (∼1 site) were utilized throughout the adsorption test. The kinetic model reveals that the magnetic induce membrane has a higher maximum adsorption capacity, a thin saturated monolayer with thrice more adsorption.