受约束估计器的近似自举法

Pub Date : 2024-10-28 DOI:10.1016/j.jspi.2024.106245
Jessie Li
{"title":"受约束估计器的近似自举法","authors":"Jessie Li","doi":"10.1016/j.jspi.2024.106245","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate how to conduct uniformly asymptotically valid inference for <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent estimators defined as the solution to a constrained optimization problem with a possibly nonsmooth or nonconvex sample objective function and a possibly nonconvex constraint set. We allow for the solution to the problem to be on the boundary of the constraint set or to drift towards the boundary of the constraint set as the sample size goes to infinity. We construct a confidence set by benchmarking a test statistic against critical values that can be obtained from a simple unconstrained quadratic programming problem. Monte Carlo simulations illustrate the uniformly correct coverage of our method in a boundary constrained maximum likelihood model, a boundary constrained nonsmooth GMM model, and a conditional logit model with capacity constraints.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The proximal bootstrap for constrained estimators\",\"authors\":\"Jessie Li\",\"doi\":\"10.1016/j.jspi.2024.106245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We demonstrate how to conduct uniformly asymptotically valid inference for <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent estimators defined as the solution to a constrained optimization problem with a possibly nonsmooth or nonconvex sample objective function and a possibly nonconvex constraint set. We allow for the solution to the problem to be on the boundary of the constraint set or to drift towards the boundary of the constraint set as the sample size goes to infinity. We construct a confidence set by benchmarking a test statistic against critical values that can be obtained from a simple unconstrained quadratic programming problem. Monte Carlo simulations illustrate the uniformly correct coverage of our method in a boundary constrained maximum likelihood model, a boundary constrained nonsmooth GMM model, and a conditional logit model with capacity constraints.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824001022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824001022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们演示了如何对 n 个一致估计器进行统一渐近有效推断,这些估计器被定义为一个约束优化问题的解,该问题具有可能是非光滑或非凸的样本目标函数和可能是非凸的约束集。我们允许问题的解处于约束集的边界上,或随着样本量的增加而向约束集的边界漂移。我们通过将测试统计量与临界值进行比对来构建置信集,这些临界值可以从一个简单的无约束二次编程问题中获得。蒙特卡罗模拟说明了我们的方法在边界约束最大似然模型、边界约束非光滑 GMM 模型和带容量约束的条件 logit 模型中的均匀正确覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
The proximal bootstrap for constrained estimators
We demonstrate how to conduct uniformly asymptotically valid inference for n-consistent estimators defined as the solution to a constrained optimization problem with a possibly nonsmooth or nonconvex sample objective function and a possibly nonconvex constraint set. We allow for the solution to the problem to be on the boundary of the constraint set or to drift towards the boundary of the constraint set as the sample size goes to infinity. We construct a confidence set by benchmarking a test statistic against critical values that can be obtained from a simple unconstrained quadratic programming problem. Monte Carlo simulations illustrate the uniformly correct coverage of our method in a boundary constrained maximum likelihood model, a boundary constrained nonsmooth GMM model, and a conditional logit model with capacity constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1