{"title":"气体水合物相变从形成到分解的热力学和动力学特性及其应用:综述","authors":"","doi":"10.1016/j.jece.2024.114614","DOIUrl":null,"url":null,"abstract":"<div><div>Gas hydrates phase transition is crucial for energy exploitation, natural gas transportation and CO<sub>2</sub> capture storage fields. This review introduces the characteristics of gas hydrate in phase transition process including the thermodynamic and kinetic characters, the dissociation and reformation characters, and the promotion methods. The phase equilibrium conditions of gas hydrate determine its thermal properties, but some accurate statistical studies are needed to obtain a variety of phase equilibrium experimental results in the future. In addition, it is necessary to quantify the factors of hydrate nucleation and provide an accurate induction time prediction model due to the randomness of the nucleation process. In hydrate exploitation applications, the depressurization and heat injection methods may be hindered due to the limitation of temperature, pressure, inhibitor and heat transfer characteristic. It will cause the hydrate reformation phenomenon and further influence the hydrate exploitation efficiency. Controlling the hydrate exploitation process requires a more systematic combination of decomposition methods, and further proving the influence factors such as memory effect and nanobubbles for the hydrate reformation. Besides, the promotion for gas hydrate phase transition also has been studied to make the hydrate rapid formation in the industrial fields come true. Stirring, spraying, bubbling method and additives are available for the promotion. However, the energy cost and efficiency improvement of hydrate formation promotion process need to be further studied. At last, several gas hydrate applications are proposed, including CO<sub>2</sub> capture and sequestration, natural gas storage, seawater desalination, cold storage, mixed gas separation and sewage treatment. This review presents an overall analysis of gas hydrate phase transition from characteristics to applications and contributes a reference for future development in hydrate technology.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic and kinetic properties of gas hydrate phase transition from formation to decomposition with applications: A review\",\"authors\":\"\",\"doi\":\"10.1016/j.jece.2024.114614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gas hydrates phase transition is crucial for energy exploitation, natural gas transportation and CO<sub>2</sub> capture storage fields. This review introduces the characteristics of gas hydrate in phase transition process including the thermodynamic and kinetic characters, the dissociation and reformation characters, and the promotion methods. The phase equilibrium conditions of gas hydrate determine its thermal properties, but some accurate statistical studies are needed to obtain a variety of phase equilibrium experimental results in the future. In addition, it is necessary to quantify the factors of hydrate nucleation and provide an accurate induction time prediction model due to the randomness of the nucleation process. In hydrate exploitation applications, the depressurization and heat injection methods may be hindered due to the limitation of temperature, pressure, inhibitor and heat transfer characteristic. It will cause the hydrate reformation phenomenon and further influence the hydrate exploitation efficiency. Controlling the hydrate exploitation process requires a more systematic combination of decomposition methods, and further proving the influence factors such as memory effect and nanobubbles for the hydrate reformation. Besides, the promotion for gas hydrate phase transition also has been studied to make the hydrate rapid formation in the industrial fields come true. Stirring, spraying, bubbling method and additives are available for the promotion. However, the energy cost and efficiency improvement of hydrate formation promotion process need to be further studied. At last, several gas hydrate applications are proposed, including CO<sub>2</sub> capture and sequestration, natural gas storage, seawater desalination, cold storage, mixed gas separation and sewage treatment. This review presents an overall analysis of gas hydrate phase transition from characteristics to applications and contributes a reference for future development in hydrate technology.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724027465\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724027465","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Thermodynamic and kinetic properties of gas hydrate phase transition from formation to decomposition with applications: A review
Gas hydrates phase transition is crucial for energy exploitation, natural gas transportation and CO2 capture storage fields. This review introduces the characteristics of gas hydrate in phase transition process including the thermodynamic and kinetic characters, the dissociation and reformation characters, and the promotion methods. The phase equilibrium conditions of gas hydrate determine its thermal properties, but some accurate statistical studies are needed to obtain a variety of phase equilibrium experimental results in the future. In addition, it is necessary to quantify the factors of hydrate nucleation and provide an accurate induction time prediction model due to the randomness of the nucleation process. In hydrate exploitation applications, the depressurization and heat injection methods may be hindered due to the limitation of temperature, pressure, inhibitor and heat transfer characteristic. It will cause the hydrate reformation phenomenon and further influence the hydrate exploitation efficiency. Controlling the hydrate exploitation process requires a more systematic combination of decomposition methods, and further proving the influence factors such as memory effect and nanobubbles for the hydrate reformation. Besides, the promotion for gas hydrate phase transition also has been studied to make the hydrate rapid formation in the industrial fields come true. Stirring, spraying, bubbling method and additives are available for the promotion. However, the energy cost and efficiency improvement of hydrate formation promotion process need to be further studied. At last, several gas hydrate applications are proposed, including CO2 capture and sequestration, natural gas storage, seawater desalination, cold storage, mixed gas separation and sewage treatment. This review presents an overall analysis of gas hydrate phase transition from characteristics to applications and contributes a reference for future development in hydrate technology.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.