{"title":"新型钯(II)、铜(II)和铁(II)苯甲酸基席夫碱金属配合物环状碳酸盐的合成和催化应用","authors":"","doi":"10.1016/j.jorganchem.2024.123424","DOIUrl":null,"url":null,"abstract":"<div><div>This work describes the synthesis and characterisation of six novel Schiff base complexes, Cu(II), Pd(II), and Fe(II), which, under the right circumstances, function as very efficient catalysts for the production of cyclic carbonates from CO<sub>2</sub> and epoxides. FT-IR spectroscopy, elemental analysis, UV–Vis spectroscopy, molar conductivity, melting point, and magnetic susceptibility measurements are among the spectroscopic methods used to characterize newly synthesized complexes. The molar conductivity values, ranging from 2.58 to 4.03 µS/cm, suggest that the complexes exhibit no molar conductivity. Co-catalysts, such as 4-(dimethylamino)pyridine, pyridine, triethylamine, and triphenyl phosphine, were used in these processes, both with and without one. 4-(Dimethylamino)pyridine was used as the co-catalyst in the catalytic studies. Additionally, a number of variables that affect the cycloaddition process were examined, including the temperature, CO<sub>2</sub> pressure, reaction time, and co-catalyst. All novel catalysts exhibited exceptional catalytic activity and selectivity in the catalytic assays. Regarding the coupling of CO<sub>2</sub> and epichlorohydrin as epoxides, the L2-Cu catalyst outperformed other catalysts in terms of catalytic activity (90.7%) and selectivity (98.9%).</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and catalytic application to form cyclic carbonates of novel Pd(II) Cu(II), and Fe(II) benzoate-based Schiff base metal complexes\",\"authors\":\"\",\"doi\":\"10.1016/j.jorganchem.2024.123424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work describes the synthesis and characterisation of six novel Schiff base complexes, Cu(II), Pd(II), and Fe(II), which, under the right circumstances, function as very efficient catalysts for the production of cyclic carbonates from CO<sub>2</sub> and epoxides. FT-IR spectroscopy, elemental analysis, UV–Vis spectroscopy, molar conductivity, melting point, and magnetic susceptibility measurements are among the spectroscopic methods used to characterize newly synthesized complexes. The molar conductivity values, ranging from 2.58 to 4.03 µS/cm, suggest that the complexes exhibit no molar conductivity. Co-catalysts, such as 4-(dimethylamino)pyridine, pyridine, triethylamine, and triphenyl phosphine, were used in these processes, both with and without one. 4-(Dimethylamino)pyridine was used as the co-catalyst in the catalytic studies. Additionally, a number of variables that affect the cycloaddition process were examined, including the temperature, CO<sub>2</sub> pressure, reaction time, and co-catalyst. All novel catalysts exhibited exceptional catalytic activity and selectivity in the catalytic assays. Regarding the coupling of CO<sub>2</sub> and epichlorohydrin as epoxides, the L2-Cu catalyst outperformed other catalysts in terms of catalytic activity (90.7%) and selectivity (98.9%).</div></div>\",\"PeriodicalId\":374,\"journal\":{\"name\":\"Journal of Organometallic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022328X24004194\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24004194","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Synthesis and catalytic application to form cyclic carbonates of novel Pd(II) Cu(II), and Fe(II) benzoate-based Schiff base metal complexes
This work describes the synthesis and characterisation of six novel Schiff base complexes, Cu(II), Pd(II), and Fe(II), which, under the right circumstances, function as very efficient catalysts for the production of cyclic carbonates from CO2 and epoxides. FT-IR spectroscopy, elemental analysis, UV–Vis spectroscopy, molar conductivity, melting point, and magnetic susceptibility measurements are among the spectroscopic methods used to characterize newly synthesized complexes. The molar conductivity values, ranging from 2.58 to 4.03 µS/cm, suggest that the complexes exhibit no molar conductivity. Co-catalysts, such as 4-(dimethylamino)pyridine, pyridine, triethylamine, and triphenyl phosphine, were used in these processes, both with and without one. 4-(Dimethylamino)pyridine was used as the co-catalyst in the catalytic studies. Additionally, a number of variables that affect the cycloaddition process were examined, including the temperature, CO2 pressure, reaction time, and co-catalyst. All novel catalysts exhibited exceptional catalytic activity and selectivity in the catalytic assays. Regarding the coupling of CO2 and epichlorohydrin as epoxides, the L2-Cu catalyst outperformed other catalysts in terms of catalytic activity (90.7%) and selectivity (98.9%).
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.