Ruifeng Wu , Yang Zhou , Yue Xian , Yafei Liu , Hao Sun , Aimin Chang , Bo Zhang
{"title":"通过设计三明治和核壳结构实现 CaCu3Ti4O12-LaMn1-xFexO3 复合陶瓷的高热敏感性和介电常数","authors":"Ruifeng Wu , Yang Zhou , Yue Xian , Yafei Liu , Hao Sun , Aimin Chang , Bo Zhang","doi":"10.1016/j.jeurceramsoc.2024.117041","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a series of CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>-LaMn<sub>1-<em>x</em></sub>Fe<sub><em>x</em></sub>O<sub>3</sub> sandwich and core-shell structured ceramics were prepared by using the conventional solid-state method. For these structures, LaMn<sub>1-<em>x</em></sub>Fe<sub><em>x</em></sub>O<sub>3</sub> is encapsulated by the CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> (CCTO) layer as a core and interlayer. These ceramics demonstrate high sensitivity with material constants (<em>B</em>) ranging from 7391 to 9786 K and temperature coefficients up to −7.03 %. In addition, Fe<sup>3+</sup> doping optimizes the electronic structure of LaMnO<sub>3</sub> (LMO) and enhances the Jahn-Taylor coupling and charge localization, thus leading to an increase in the material constant. Furthermore, the core-shell ceramics of CCTO-LMO (Co-LMO) have a high dielectric constant of 16731 at 1 kHz, which exceeds that of the CCTO samples. This enhancement can be attributed to the increase in potential differences caused by the additional carriers. The proposed schemes in this work have important implications for regulating the thermal sensitivity and permittivity of CCTO-based multifunctional coupled electronics.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 117041"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High thermal sensitivity and dielectric constants in CaCu3Ti4O12-LaMn1-xFexO3 composite ceramics by designing sandwich and core-shell structure\",\"authors\":\"Ruifeng Wu , Yang Zhou , Yue Xian , Yafei Liu , Hao Sun , Aimin Chang , Bo Zhang\",\"doi\":\"10.1016/j.jeurceramsoc.2024.117041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a series of CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>-LaMn<sub>1-<em>x</em></sub>Fe<sub><em>x</em></sub>O<sub>3</sub> sandwich and core-shell structured ceramics were prepared by using the conventional solid-state method. For these structures, LaMn<sub>1-<em>x</em></sub>Fe<sub><em>x</em></sub>O<sub>3</sub> is encapsulated by the CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> (CCTO) layer as a core and interlayer. These ceramics demonstrate high sensitivity with material constants (<em>B</em>) ranging from 7391 to 9786 K and temperature coefficients up to −7.03 %. In addition, Fe<sup>3+</sup> doping optimizes the electronic structure of LaMnO<sub>3</sub> (LMO) and enhances the Jahn-Taylor coupling and charge localization, thus leading to an increase in the material constant. Furthermore, the core-shell ceramics of CCTO-LMO (Co-LMO) have a high dielectric constant of 16731 at 1 kHz, which exceeds that of the CCTO samples. This enhancement can be attributed to the increase in potential differences caused by the additional carriers. The proposed schemes in this work have important implications for regulating the thermal sensitivity and permittivity of CCTO-based multifunctional coupled electronics.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"45 3\",\"pages\":\"Article 117041\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221924009142\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924009142","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
High thermal sensitivity and dielectric constants in CaCu3Ti4O12-LaMn1-xFexO3 composite ceramics by designing sandwich and core-shell structure
In this work, a series of CaCu3Ti4O12-LaMn1-xFexO3 sandwich and core-shell structured ceramics were prepared by using the conventional solid-state method. For these structures, LaMn1-xFexO3 is encapsulated by the CaCu3Ti4O12 (CCTO) layer as a core and interlayer. These ceramics demonstrate high sensitivity with material constants (B) ranging from 7391 to 9786 K and temperature coefficients up to −7.03 %. In addition, Fe3+ doping optimizes the electronic structure of LaMnO3 (LMO) and enhances the Jahn-Taylor coupling and charge localization, thus leading to an increase in the material constant. Furthermore, the core-shell ceramics of CCTO-LMO (Co-LMO) have a high dielectric constant of 16731 at 1 kHz, which exceeds that of the CCTO samples. This enhancement can be attributed to the increase in potential differences caused by the additional carriers. The proposed schemes in this work have important implications for regulating the thermal sensitivity and permittivity of CCTO-based multifunctional coupled electronics.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.