Xiangcui Qiu , Yihao Zheng , Haibo Li , Konggang Qu , Hui Yan , Rui Li
{"title":"揭示可调 MXene 纳米通道中的气体传输机制:分子动力学模拟的启示","authors":"Xiangcui Qiu , Yihao Zheng , Haibo Li , Konggang Qu , Hui Yan , Rui Li","doi":"10.1016/j.memsci.2024.123459","DOIUrl":null,"url":null,"abstract":"<div><div>MXene-based membranes have shown tremendous potential in gas separation applications. Here, molecular dynamics (MD) simulations are used to investigate the effects of varying the structural parameters of Ti₃C₂O₂ nanochannels on the permeation and separation performance of H₂, CO₂, N₂, and CH₄ gases. The results demonstrate that the interlayer spacing significantly influences gas permeability, with wider channels generally exhibiting higher permeance. Channel length, however, has a relatively minor impact on permeability, varying by gas species. Potential of mean force (PMF) analysis reveals that CO₂ molecules face a notable energy barrier at the channel entrance and have the strongest interactions with the MXene interface within the channel, potentially leading to blockage. Spatial density analysis further confirms this CO₂ blockage phenomenon, which diminishes as the interlayer spacing increases. In terms of gas separation selectivity, H₂/CH₄ and H₂/CO₂ mixtures exhibit high selectivity, with maximum values of 41.08 and 27.06, respectively. Notably, the H₂/CO₂ system exhibits a positive correlation between permeability and selectivity, breaking the traditional permeability-selectivity trade-off. This anomalous behavior can be attributed to the CO₂ blockage effect. This study provides theoretical guidance for the design and optimization of MXene-based membrane materials in practical applications.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123459"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling gas transport mechanisms in tunable MXene nanochannels: Insights from molecular dynamics simulations\",\"authors\":\"Xiangcui Qiu , Yihao Zheng , Haibo Li , Konggang Qu , Hui Yan , Rui Li\",\"doi\":\"10.1016/j.memsci.2024.123459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MXene-based membranes have shown tremendous potential in gas separation applications. Here, molecular dynamics (MD) simulations are used to investigate the effects of varying the structural parameters of Ti₃C₂O₂ nanochannels on the permeation and separation performance of H₂, CO₂, N₂, and CH₄ gases. The results demonstrate that the interlayer spacing significantly influences gas permeability, with wider channels generally exhibiting higher permeance. Channel length, however, has a relatively minor impact on permeability, varying by gas species. Potential of mean force (PMF) analysis reveals that CO₂ molecules face a notable energy barrier at the channel entrance and have the strongest interactions with the MXene interface within the channel, potentially leading to blockage. Spatial density analysis further confirms this CO₂ blockage phenomenon, which diminishes as the interlayer spacing increases. In terms of gas separation selectivity, H₂/CH₄ and H₂/CO₂ mixtures exhibit high selectivity, with maximum values of 41.08 and 27.06, respectively. Notably, the H₂/CO₂ system exhibits a positive correlation between permeability and selectivity, breaking the traditional permeability-selectivity trade-off. This anomalous behavior can be attributed to the CO₂ blockage effect. This study provides theoretical guidance for the design and optimization of MXene-based membrane materials in practical applications.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"715 \",\"pages\":\"Article 123459\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824010536\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010536","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Unveiling gas transport mechanisms in tunable MXene nanochannels: Insights from molecular dynamics simulations
MXene-based membranes have shown tremendous potential in gas separation applications. Here, molecular dynamics (MD) simulations are used to investigate the effects of varying the structural parameters of Ti₃C₂O₂ nanochannels on the permeation and separation performance of H₂, CO₂, N₂, and CH₄ gases. The results demonstrate that the interlayer spacing significantly influences gas permeability, with wider channels generally exhibiting higher permeance. Channel length, however, has a relatively minor impact on permeability, varying by gas species. Potential of mean force (PMF) analysis reveals that CO₂ molecules face a notable energy barrier at the channel entrance and have the strongest interactions with the MXene interface within the channel, potentially leading to blockage. Spatial density analysis further confirms this CO₂ blockage phenomenon, which diminishes as the interlayer spacing increases. In terms of gas separation selectivity, H₂/CH₄ and H₂/CO₂ mixtures exhibit high selectivity, with maximum values of 41.08 and 27.06, respectively. Notably, the H₂/CO₂ system exhibits a positive correlation between permeability and selectivity, breaking the traditional permeability-selectivity trade-off. This anomalous behavior can be attributed to the CO₂ blockage effect. This study provides theoretical guidance for the design and optimization of MXene-based membrane materials in practical applications.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.