Chao Ding , Qi Shi , Huali Hao , Rui Ma , Shukui Li , Changqing Ye , Changyang Yu , Xin Liu , Peng Yu , Shulong Ye
{"title":"具有优异热性能的碳化硅增强 Al-50Si 复合材料的原位合成与微结构演化","authors":"Chao Ding , Qi Shi , Huali Hao , Rui Ma , Shukui Li , Changqing Ye , Changyang Yu , Xin Liu , Peng Yu , Shulong Ye","doi":"10.1016/j.matdes.2024.113422","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporating carbon nanotubes (CNTs) into Al-Si alloy to prepare in-situ SiC/Al-Si composites enhances thermal conductivity (TC) and reduces the coefficient of thermal expansion (CTE). However, challenges include CNTs aggregation and uneven SiC distribution. This study uses fluidized bed chemical vapor deposition (FBCVD) to achieve uniform CNTs coverage on Al-50Si powder. Subsequent powder hot extrusion and heat treatment above the eutectic temperature enable a gradual reaction between CNTs and Al/Si atoms, resulting in uniformly dispersed SiC within the SiC/Al-50Si composite. The formation mechanism of in-situ SiC particles and their impact on the microstructure, thermal and mechanical properties of the composite are further investigated. The formation process involves a two-step chemical reaction: lamellar Al<sub>4</sub>C<sub>3</sub> phases transform into lamellar eutectic SiC + Al phases, which then transition into polyhedral SiC particles through epitaxial growth. This in-situ formation of SiC particles also impedes Si growth during heat treatment, refining Si particles and enhancing the composite’s properties. The resulting in-situ SiC/Al-50Si composite exhibits excellent thermal and mechanical properties, including a high TC of ∼162 Wm<sup>-1</sup>K<sup>−1</sup>, a low CTE of ∼ 8.7 × 10<sup>-6</sup>/K, and a good bending strength of approximately 253 MPa at room temperature.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113422"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ synthesis and microstructural evolution of a SiC reinforced Al-50Si composite exhibiting exceptional thermal properties\",\"authors\":\"Chao Ding , Qi Shi , Huali Hao , Rui Ma , Shukui Li , Changqing Ye , Changyang Yu , Xin Liu , Peng Yu , Shulong Ye\",\"doi\":\"10.1016/j.matdes.2024.113422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Incorporating carbon nanotubes (CNTs) into Al-Si alloy to prepare in-situ SiC/Al-Si composites enhances thermal conductivity (TC) and reduces the coefficient of thermal expansion (CTE). However, challenges include CNTs aggregation and uneven SiC distribution. This study uses fluidized bed chemical vapor deposition (FBCVD) to achieve uniform CNTs coverage on Al-50Si powder. Subsequent powder hot extrusion and heat treatment above the eutectic temperature enable a gradual reaction between CNTs and Al/Si atoms, resulting in uniformly dispersed SiC within the SiC/Al-50Si composite. The formation mechanism of in-situ SiC particles and their impact on the microstructure, thermal and mechanical properties of the composite are further investigated. The formation process involves a two-step chemical reaction: lamellar Al<sub>4</sub>C<sub>3</sub> phases transform into lamellar eutectic SiC + Al phases, which then transition into polyhedral SiC particles through epitaxial growth. This in-situ formation of SiC particles also impedes Si growth during heat treatment, refining Si particles and enhancing the composite’s properties. The resulting in-situ SiC/Al-50Si composite exhibits excellent thermal and mechanical properties, including a high TC of ∼162 Wm<sup>-1</sup>K<sup>−1</sup>, a low CTE of ∼ 8.7 × 10<sup>-6</sup>/K, and a good bending strength of approximately 253 MPa at room temperature.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"247 \",\"pages\":\"Article 113422\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007974\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007974","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在铝硅合金中加入碳纳米管 (CNT) 以制备原位 SiC/Al-Si 复合材料,可提高热导率 (TC) 并降低热膨胀系数 (CTE)。然而,CNTs 聚集和 SiC 分布不均是其面临的挑战。本研究采用流化床化学气相沉积(FBCVD)技术在 Al-50Si 粉末上实现均匀的 CNTs 覆盖。随后的粉末热挤压和高于共晶温度的热处理可使 CNT 与 Al/Si 原子逐渐发生反应,从而在 SiC/Al-50Si 复合材料中形成均匀分散的 SiC。本文进一步研究了原位 SiC 粒子的形成机制及其对复合材料微观结构、热性能和机械性能的影响。形成过程包括两步化学反应:片状 Al4C3 相转变为片状 SiC + Al 共晶相,然后通过外延生长转变为多面体 SiC 颗粒。这种原位形成的 SiC 颗粒还能在热处理过程中阻碍硅的生长,从而细化硅颗粒并增强复合材料的性能。由此产生的原位 SiC/Al-50Si 复合材料具有优异的热性能和机械性能,包括 ∼162 Wm-1K-1 的高 TC、∼ 8.7 × 10-6/K 的低 CTE 和室温下约 253 MPa 的良好弯曲强度。
In-situ synthesis and microstructural evolution of a SiC reinforced Al-50Si composite exhibiting exceptional thermal properties
Incorporating carbon nanotubes (CNTs) into Al-Si alloy to prepare in-situ SiC/Al-Si composites enhances thermal conductivity (TC) and reduces the coefficient of thermal expansion (CTE). However, challenges include CNTs aggregation and uneven SiC distribution. This study uses fluidized bed chemical vapor deposition (FBCVD) to achieve uniform CNTs coverage on Al-50Si powder. Subsequent powder hot extrusion and heat treatment above the eutectic temperature enable a gradual reaction between CNTs and Al/Si atoms, resulting in uniformly dispersed SiC within the SiC/Al-50Si composite. The formation mechanism of in-situ SiC particles and their impact on the microstructure, thermal and mechanical properties of the composite are further investigated. The formation process involves a two-step chemical reaction: lamellar Al4C3 phases transform into lamellar eutectic SiC + Al phases, which then transition into polyhedral SiC particles through epitaxial growth. This in-situ formation of SiC particles also impedes Si growth during heat treatment, refining Si particles and enhancing the composite’s properties. The resulting in-situ SiC/Al-50Si composite exhibits excellent thermal and mechanical properties, including a high TC of ∼162 Wm-1K−1, a low CTE of ∼ 8.7 × 10-6/K, and a good bending strength of approximately 253 MPa at room temperature.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.