Yumeng Xie , Jing Ren , Peng Liu , Junfeng Zheng , Zhaohuan Mai , Yanyan Liu , Xuewu Zhu , Xin Li , Daliang Xu , Heng Liang
{"title":"制备具有更高性能和耐氯性的绿色木糖基纳滤膜","authors":"Yumeng Xie , Jing Ren , Peng Liu , Junfeng Zheng , Zhaohuan Mai , Yanyan Liu , Xuewu Zhu , Xin Li , Daliang Xu , Heng Liang","doi":"10.1016/j.desal.2024.118243","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofiltration technology has been widely used in drinking water purification due to its excellent permeance and selectivity properties, especially in small molecular solute separation. However, using oxidizing agents in the pretreatment process for fouling control threatens the nanofiltration membrane structure, leading to the deterioration of the separation performance. Herein, we fabricate a polyester nanofiltration membrane utilizing xylose as an aqueous monomer in the interfacial polymerization process. Due to abundant hydroxyl groups and low reactivity of xylose monomers, the polyester membrane possessed a hydrophilic and thin separation layer, which led to high water permeance with the optimal value of 28.7 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup>. Possessing highly cross-linking structures and negatively charged surfaces, the fabricated polyester membranes showed an excellent Na<sub>2</sub>SO<sub>4</sub> rejection of up to 95.4 %. In addition, the low electron-donating property of polyester membranes ensured their chemical stability toward active chlorine. This endows relatively stable performance of the polyester membrane after chlorine resistance tests in a wide pH range. This study presents a feasible approach employing green monomers for fabricating nanofiltration membranes with outstanding separation performance and robust chlorine resistance.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118243"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of green xylose-based nanofiltration membrane with enhanced performance and chlorine resistance\",\"authors\":\"Yumeng Xie , Jing Ren , Peng Liu , Junfeng Zheng , Zhaohuan Mai , Yanyan Liu , Xuewu Zhu , Xin Li , Daliang Xu , Heng Liang\",\"doi\":\"10.1016/j.desal.2024.118243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanofiltration technology has been widely used in drinking water purification due to its excellent permeance and selectivity properties, especially in small molecular solute separation. However, using oxidizing agents in the pretreatment process for fouling control threatens the nanofiltration membrane structure, leading to the deterioration of the separation performance. Herein, we fabricate a polyester nanofiltration membrane utilizing xylose as an aqueous monomer in the interfacial polymerization process. Due to abundant hydroxyl groups and low reactivity of xylose monomers, the polyester membrane possessed a hydrophilic and thin separation layer, which led to high water permeance with the optimal value of 28.7 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup>. Possessing highly cross-linking structures and negatively charged surfaces, the fabricated polyester membranes showed an excellent Na<sub>2</sub>SO<sub>4</sub> rejection of up to 95.4 %. In addition, the low electron-donating property of polyester membranes ensured their chemical stability toward active chlorine. This endows relatively stable performance of the polyester membrane after chlorine resistance tests in a wide pH range. This study presents a feasible approach employing green monomers for fabricating nanofiltration membranes with outstanding separation performance and robust chlorine resistance.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"593 \",\"pages\":\"Article 118243\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009548\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009548","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Fabrication of green xylose-based nanofiltration membrane with enhanced performance and chlorine resistance
Nanofiltration technology has been widely used in drinking water purification due to its excellent permeance and selectivity properties, especially in small molecular solute separation. However, using oxidizing agents in the pretreatment process for fouling control threatens the nanofiltration membrane structure, leading to the deterioration of the separation performance. Herein, we fabricate a polyester nanofiltration membrane utilizing xylose as an aqueous monomer in the interfacial polymerization process. Due to abundant hydroxyl groups and low reactivity of xylose monomers, the polyester membrane possessed a hydrophilic and thin separation layer, which led to high water permeance with the optimal value of 28.7 L·m−2·h−1·bar−1. Possessing highly cross-linking structures and negatively charged surfaces, the fabricated polyester membranes showed an excellent Na2SO4 rejection of up to 95.4 %. In addition, the low electron-donating property of polyester membranes ensured their chemical stability toward active chlorine. This endows relatively stable performance of the polyester membrane after chlorine resistance tests in a wide pH range. This study presents a feasible approach employing green monomers for fabricating nanofiltration membranes with outstanding separation performance and robust chlorine resistance.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.