在不同地动持续时间定义下,基于正刚度和负刚度改善基底隔震液体储罐的抗震性能

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2024-11-01 DOI:10.1016/j.soildyn.2024.109061
Wei Jing , Fangdie Hu , Yixin Zhang , Shushuang Song
{"title":"在不同地动持续时间定义下,基于正刚度和负刚度改善基底隔震液体储罐的抗震性能","authors":"Wei Jing ,&nbsp;Fangdie Hu ,&nbsp;Yixin Zhang ,&nbsp;Shushuang Song","doi":"10.1016/j.soildyn.2024.109061","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the three important characteristics of ground motion, the impact of ground motion duration on the dynamic responses of structures necessitates further in-depth research. Seven different definitions of ground motion duration are selected. The three-dimensional numerical calculation models of non-damping liquid storage tank (LST), rubber-isolated LST, isolated LST based on positive and negative stiffness in parallel, and isolated LST based on positive and negative stiffness in series-parallel are established by ADINA, and the dynamic responses of the different LSTs under earthquakes with different definitions of ground motion duration are comparatively studied. The results show that the influence of different definitions of ground motion duration on the dynamic responses of LST can not be neglected. The dynamic responses are larger under the long-duration ground motion compared to the short-duration ground motions, besides, and the three types of isolation exhibit better performance under long-duration ground motions than under short-duration ground motions. The damping effect of the positive and negative stiffness in series-parallel is the best. The rubber isolation has an amplifying effect on the liquid sloshing wave height, while the isolated system with negative stiffness can make up for this deficiency. Reasonable arrangement of negative stiffness device in isolation layer of LST is helpful to realize dual control of structure responses and liquid sloshing wave height.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109061"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic performance improvement of base-isolated liquid storage tank based on positive and negative stiffness under different definitions of ground motion duration\",\"authors\":\"Wei Jing ,&nbsp;Fangdie Hu ,&nbsp;Yixin Zhang ,&nbsp;Shushuang Song\",\"doi\":\"10.1016/j.soildyn.2024.109061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As one of the three important characteristics of ground motion, the impact of ground motion duration on the dynamic responses of structures necessitates further in-depth research. Seven different definitions of ground motion duration are selected. The three-dimensional numerical calculation models of non-damping liquid storage tank (LST), rubber-isolated LST, isolated LST based on positive and negative stiffness in parallel, and isolated LST based on positive and negative stiffness in series-parallel are established by ADINA, and the dynamic responses of the different LSTs under earthquakes with different definitions of ground motion duration are comparatively studied. The results show that the influence of different definitions of ground motion duration on the dynamic responses of LST can not be neglected. The dynamic responses are larger under the long-duration ground motion compared to the short-duration ground motions, besides, and the three types of isolation exhibit better performance under long-duration ground motions than under short-duration ground motions. The damping effect of the positive and negative stiffness in series-parallel is the best. The rubber isolation has an amplifying effect on the liquid sloshing wave height, while the isolated system with negative stiffness can make up for this deficiency. Reasonable arrangement of negative stiffness device in isolation layer of LST is helpful to realize dual control of structure responses and liquid sloshing wave height.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"188 \",\"pages\":\"Article 109061\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124006134\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124006134","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

作为地动的三个重要特征之一,地动持续时间对结构动态响应的影响需要进一步深入研究。本文选取了七种不同的地震动持续时间定义。利用 ADINA 建立了无阻尼储液罐(LST)、橡胶隔震储液罐、基于正负刚度并联的隔震储液罐、基于正负刚度串并联的隔震储液罐的三维数值计算模型,比较研究了不同地动持续时间定义下不同储液罐在地震作用下的动力响应。结果表明,不同地动持续时间定义对 LST 动态响应的影响不容忽视。此外,与短历时地动相比,长历时地动下的动态响应更大,而且三种类型的隔震在长历时地动下比在短历时地动下表现出更好的性能。正负刚度串并联的阻尼效果最好。橡胶隔震对液体荡波高度有放大作用,而具有负刚度的隔震系统可以弥补这一不足。在 LST 隔离层中合理布置负刚度装置有助于实现结构响应和液体荡波高度的双重控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic performance improvement of base-isolated liquid storage tank based on positive and negative stiffness under different definitions of ground motion duration
As one of the three important characteristics of ground motion, the impact of ground motion duration on the dynamic responses of structures necessitates further in-depth research. Seven different definitions of ground motion duration are selected. The three-dimensional numerical calculation models of non-damping liquid storage tank (LST), rubber-isolated LST, isolated LST based on positive and negative stiffness in parallel, and isolated LST based on positive and negative stiffness in series-parallel are established by ADINA, and the dynamic responses of the different LSTs under earthquakes with different definitions of ground motion duration are comparatively studied. The results show that the influence of different definitions of ground motion duration on the dynamic responses of LST can not be neglected. The dynamic responses are larger under the long-duration ground motion compared to the short-duration ground motions, besides, and the three types of isolation exhibit better performance under long-duration ground motions than under short-duration ground motions. The damping effect of the positive and negative stiffness in series-parallel is the best. The rubber isolation has an amplifying effect on the liquid sloshing wave height, while the isolated system with negative stiffness can make up for this deficiency. Reasonable arrangement of negative stiffness device in isolation layer of LST is helpful to realize dual control of structure responses and liquid sloshing wave height.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Evaluation of the static and dynamic behavior characteristics of biopolymer-treated soil at varying moisture contents Knowledge structure and research progress in earthquake-induced liquefaction assessment from 2000 to 2023: A scientometric analysis incorporating domain knowledge A novel physics-constrained neural network: An illustration of ground motion models Investigation of dynamic responses of slopes in various anchor cable failure modes Post-tensioned coupling beams: Mechanics, cyclic response, and damage evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1