通过统计因果搜索校准和验证宏观经济模拟模型

IF 2.3 3区 经济学 Q2 ECONOMICS Journal of Economic Behavior & Organization Pub Date : 2024-11-02 DOI:10.1016/j.jebo.2024.106786
Mario Martinoli, Alessio Moneta, Gianluca Pallante
{"title":"通过统计因果搜索校准和验证宏观经济模拟模型","authors":"Mario Martinoli,&nbsp;Alessio Moneta,&nbsp;Gianluca Pallante","doi":"10.1016/j.jebo.2024.106786","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a general procedure for macroeconomic models’ calibration and validation. Configurations of parameters are selected on the basis of a loss function involving a distance between model-derived structural coefficients and their empirical counterparts. These, in both cases, are locally identified by exploiting non-Gaussianity in a structural vector autoregressive framework under a data-driven approach. We use model confidence set to account for the uncertainty in the selection procedure. We provide a measure of validation by comparing (model’s and empirical) shocks-variables structure. We apply our procedure to a complex macroeconomic simulation model that studies the link between climate change and economic growth.</div></div>","PeriodicalId":48409,"journal":{"name":"Journal of Economic Behavior & Organization","volume":"228 ","pages":"Article 106786"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration and validation of macroeconomic simulation models by statistical causal search\",\"authors\":\"Mario Martinoli,&nbsp;Alessio Moneta,&nbsp;Gianluca Pallante\",\"doi\":\"10.1016/j.jebo.2024.106786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a general procedure for macroeconomic models’ calibration and validation. Configurations of parameters are selected on the basis of a loss function involving a distance between model-derived structural coefficients and their empirical counterparts. These, in both cases, are locally identified by exploiting non-Gaussianity in a structural vector autoregressive framework under a data-driven approach. We use model confidence set to account for the uncertainty in the selection procedure. We provide a measure of validation by comparing (model’s and empirical) shocks-variables structure. We apply our procedure to a complex macroeconomic simulation model that studies the link between climate change and economic growth.</div></div>\",\"PeriodicalId\":48409,\"journal\":{\"name\":\"Journal of Economic Behavior & Organization\",\"volume\":\"228 \",\"pages\":\"Article 106786\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Behavior & Organization\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167268124004001\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Behavior & Organization","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167268124004001","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了宏观经济模型校准和验证的一般程序。参数配置的选择基于损失函数,该函数涉及模型得出的结构系数与其经验对应系数之间的距离。在这两种情况下,都是在数据驱动方法下,利用结构向量自回归框架中的非高斯性进行局部识别的。我们使用模型置信集来解释选择过程中的不确定性。通过比较(模型和经验)冲击-变量结构,我们提供了一种验证措施。我们将这一程序应用于研究气候变化与经济增长之间联系的复杂宏观经济模拟模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration and validation of macroeconomic simulation models by statistical causal search
We introduce a general procedure for macroeconomic models’ calibration and validation. Configurations of parameters are selected on the basis of a loss function involving a distance between model-derived structural coefficients and their empirical counterparts. These, in both cases, are locally identified by exploiting non-Gaussianity in a structural vector autoregressive framework under a data-driven approach. We use model confidence set to account for the uncertainty in the selection procedure. We provide a measure of validation by comparing (model’s and empirical) shocks-variables structure. We apply our procedure to a complex macroeconomic simulation model that studies the link between climate change and economic growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
9.10%
发文量
392
期刊介绍: The Journal of Economic Behavior and Organization is devoted to theoretical and empirical research concerning economic decision, organization and behavior and to economic change in all its aspects. Its specific purposes are to foster an improved understanding of how human cognitive, computational and informational characteristics influence the working of economic organizations and market economies and how an economy structural features lead to various types of micro and macro behavior, to changing patterns of development and to institutional evolution. Research with these purposes that explore the interrelations of economics with other disciplines such as biology, psychology, law, anthropology, sociology and mathematics is particularly welcome.
期刊最新文献
Belief diversity and cooperation State-dependent impulse responses in agent-based models: A new methodology and an economic application How to increase and sustain cooperation in public goods games: Conditional commitments via a mediator Does provincial gambling culture affect corporate innovation? Evidence from China Does family culture hamper corporate deceptive green behavior decision-making?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1