Filippo Martinini , Mauro Mangia , Alex Marchioni , Gianluca Setti , Riccardo Rovatti
{"title":"增量欠采样磁共振成像采集与神经自我评估","authors":"Filippo Martinini , Mauro Mangia , Alex Marchioni , Gianluca Setti , Riccardo Rovatti","doi":"10.1016/j.sigpro.2024.109746","DOIUrl":null,"url":null,"abstract":"<div><div>Accelerated MRI acquisition is widely adopted and basically consists in undersampling the current slice at the cost of a quality degradation. What samples to skip is determined by an encoder, while the quality loss is partially compensated by the use of a decoder. The hypothesis behind accelerated MRI acquisition is that to higher acceleration factors always correspond lower reconstruction qualities with an undersampling pattern that is usually fixed at design time, neglecting adaptability on the slice acquired at inference time. This paper proposes a novel accelerated MRI acquisition method that enables single-slice adaptation by dividing the acquisition into incremental batches and estimating the reconstruction quality at the end of each batch. The acquisition terminates as soon as the target quality is reached. We demonstrate the efficacy of our novel method using a state-of-the-art neural model capable of jointly optimizing the encoder and decoder. To estimate the current quality of the slice we reconstruct and propose a neural quality predictor. We demonstrate the advantages of our novel acquisition method compared to classic acquisition for two different datasets and for both line-constrained and unconstrained Cartesian sampling strategies (theoretically implementable via 2D and 3D imaging respectively).</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"228 ","pages":"Article 109746"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental Undersampling MRI Acquisition With Neural Self Assessment\",\"authors\":\"Filippo Martinini , Mauro Mangia , Alex Marchioni , Gianluca Setti , Riccardo Rovatti\",\"doi\":\"10.1016/j.sigpro.2024.109746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accelerated MRI acquisition is widely adopted and basically consists in undersampling the current slice at the cost of a quality degradation. What samples to skip is determined by an encoder, while the quality loss is partially compensated by the use of a decoder. The hypothesis behind accelerated MRI acquisition is that to higher acceleration factors always correspond lower reconstruction qualities with an undersampling pattern that is usually fixed at design time, neglecting adaptability on the slice acquired at inference time. This paper proposes a novel accelerated MRI acquisition method that enables single-slice adaptation by dividing the acquisition into incremental batches and estimating the reconstruction quality at the end of each batch. The acquisition terminates as soon as the target quality is reached. We demonstrate the efficacy of our novel method using a state-of-the-art neural model capable of jointly optimizing the encoder and decoder. To estimate the current quality of the slice we reconstruct and propose a neural quality predictor. We demonstrate the advantages of our novel acquisition method compared to classic acquisition for two different datasets and for both line-constrained and unconstrained Cartesian sampling strategies (theoretically implementable via 2D and 3D imaging respectively).</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"228 \",\"pages\":\"Article 109746\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003669\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003669","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Incremental Undersampling MRI Acquisition With Neural Self Assessment
Accelerated MRI acquisition is widely adopted and basically consists in undersampling the current slice at the cost of a quality degradation. What samples to skip is determined by an encoder, while the quality loss is partially compensated by the use of a decoder. The hypothesis behind accelerated MRI acquisition is that to higher acceleration factors always correspond lower reconstruction qualities with an undersampling pattern that is usually fixed at design time, neglecting adaptability on the slice acquired at inference time. This paper proposes a novel accelerated MRI acquisition method that enables single-slice adaptation by dividing the acquisition into incremental batches and estimating the reconstruction quality at the end of each batch. The acquisition terminates as soon as the target quality is reached. We demonstrate the efficacy of our novel method using a state-of-the-art neural model capable of jointly optimizing the encoder and decoder. To estimate the current quality of the slice we reconstruct and propose a neural quality predictor. We demonstrate the advantages of our novel acquisition method compared to classic acquisition for two different datasets and for both line-constrained and unconstrained Cartesian sampling strategies (theoretically implementable via 2D and 3D imaging respectively).
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.