Shunbao Li , Zhipeng Yuan , Ruoling Peng , Daniel Leybourne , Qing Xue , Yang Li , Po Yang
{"title":"利用轻量级深度学习为小麦病虫害综合治理提供以农民为中心的有效移动智能解决方案","authors":"Shunbao Li , Zhipeng Yuan , Ruoling Peng , Daniel Leybourne , Qing Xue , Yang Li , Po Yang","doi":"10.1016/j.jii.2024.100705","DOIUrl":null,"url":null,"abstract":"<div><div>Integrated Pest Management (IPM) techniques have been widely used in agriculture to manage pest damage in the most economical way and to minimise harm to people, property and the environment. However, current research and products on the market cannot consolidate this process. Most existing solutions either require experts to visually identify pests or cannot automatically assess pest levels and make decisions based on detection results. To make the process from pest identification to pest management decision making more automated and intelligent, we propose an end-to-end integrated pest management solution that uses deep learning for semi-automated pest detection and an expert system for pest management decision making. Specifically, a low computational cost sampling point generation algorithm is proposed to enable mobile devices to generate uniformly distributed sampling points in irregularly shaped fields. We build a pest detection model based on YoloX and use Pytorch Mobile to deploy it on mobile phones, allowing users to detect pests offline. We develop a standardised sampling specification and a mobile application to guide users to take photos that allow pest population density to be calculated. A rule-based expert system is established to derive pest management thresholds from prior agricultural knowledge and make decisions based on pest detection results. We also propose a human-in-the-loop algorithm to continuously track and update the validity of the thresholds in the expert system. The mean average precision of the pest detection model is 58.17% for 97 classes, 75.29% for 2 classes, and 57.33% for 11 classes on three pest datasets, respectively. The usability of the pest management system is assessed by the User Experience Surveys and achieves a System Usability Scale (SUS) score of 76. The usability of the proposed solution is validated by qualitative field experiments.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100705"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective farmer-centred mobile intelligence solution using lightweight deep learning for integrated wheat pest management\",\"authors\":\"Shunbao Li , Zhipeng Yuan , Ruoling Peng , Daniel Leybourne , Qing Xue , Yang Li , Po Yang\",\"doi\":\"10.1016/j.jii.2024.100705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrated Pest Management (IPM) techniques have been widely used in agriculture to manage pest damage in the most economical way and to minimise harm to people, property and the environment. However, current research and products on the market cannot consolidate this process. Most existing solutions either require experts to visually identify pests or cannot automatically assess pest levels and make decisions based on detection results. To make the process from pest identification to pest management decision making more automated and intelligent, we propose an end-to-end integrated pest management solution that uses deep learning for semi-automated pest detection and an expert system for pest management decision making. Specifically, a low computational cost sampling point generation algorithm is proposed to enable mobile devices to generate uniformly distributed sampling points in irregularly shaped fields. We build a pest detection model based on YoloX and use Pytorch Mobile to deploy it on mobile phones, allowing users to detect pests offline. We develop a standardised sampling specification and a mobile application to guide users to take photos that allow pest population density to be calculated. A rule-based expert system is established to derive pest management thresholds from prior agricultural knowledge and make decisions based on pest detection results. We also propose a human-in-the-loop algorithm to continuously track and update the validity of the thresholds in the expert system. The mean average precision of the pest detection model is 58.17% for 97 classes, 75.29% for 2 classes, and 57.33% for 11 classes on three pest datasets, respectively. The usability of the pest management system is assessed by the User Experience Surveys and achieves a System Usability Scale (SUS) score of 76. The usability of the proposed solution is validated by qualitative field experiments.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"42 \",\"pages\":\"Article 100705\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24001481\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001481","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An effective farmer-centred mobile intelligence solution using lightweight deep learning for integrated wheat pest management
Integrated Pest Management (IPM) techniques have been widely used in agriculture to manage pest damage in the most economical way and to minimise harm to people, property and the environment. However, current research and products on the market cannot consolidate this process. Most existing solutions either require experts to visually identify pests or cannot automatically assess pest levels and make decisions based on detection results. To make the process from pest identification to pest management decision making more automated and intelligent, we propose an end-to-end integrated pest management solution that uses deep learning for semi-automated pest detection and an expert system for pest management decision making. Specifically, a low computational cost sampling point generation algorithm is proposed to enable mobile devices to generate uniformly distributed sampling points in irregularly shaped fields. We build a pest detection model based on YoloX and use Pytorch Mobile to deploy it on mobile phones, allowing users to detect pests offline. We develop a standardised sampling specification and a mobile application to guide users to take photos that allow pest population density to be calculated. A rule-based expert system is established to derive pest management thresholds from prior agricultural knowledge and make decisions based on pest detection results. We also propose a human-in-the-loop algorithm to continuously track and update the validity of the thresholds in the expert system. The mean average precision of the pest detection model is 58.17% for 97 classes, 75.29% for 2 classes, and 57.33% for 11 classes on three pest datasets, respectively. The usability of the pest management system is assessed by the User Experience Surveys and achieves a System Usability Scale (SUS) score of 76. The usability of the proposed solution is validated by qualitative field experiments.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.