Margot Challand , Philippe Vismara , Stephane de Tourdonnet
{"title":"将制约因素规划与参与式方法相结合,设计生态农业种植系统","authors":"Margot Challand , Philippe Vismara , Stephane de Tourdonnet","doi":"10.1016/j.agsy.2024.104154","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Agroecology implementation around the world have shown that increasing the complexity of the agroecosystem leads to increased resilience, lower dependence on synthetic inputs, the provision of ecosystem services and improved performance. However, designing diversified agroecosystems is particularly complex because of the diverse factors to take into account for each specific local context and the range of possible spatiotemporal crop combinations.</div></div><div><h3>Objective</h3><div>Here we propose an iterative agroecological design approach combining artificial intelligence with constraint programming and co-design workshops with farmers to explore and optimize spatiotemporal cropping arrangements in diversified cropping systems.</div></div><div><h3>Methods</h3><div>Our iterative approach comprises a three-step loop for designing new cropping systems: 1) identifying problem data and spatiotemporal constraints; 2) applying a flexible constraint programming model, and refining/removing constraints iteratively with farmers' input until a solution is found; and 3) evaluating solutions through model assessment and workshops with farmers, leading to the design of a new scenario if necessary (repeating step 2). We applied our approach to a case study involving diversified mixed fruit tree–vegetable cropping systems in southern France, whereby farmers were involved in co-design workshops with an agronomist.</div></div><div><h3>Results and conclusions</h3><div>The constraint programming model simulated most important farmers' constraints while adapting to the input of new information during the design process. The workshops facilitated knowledge elicitation, with progressive questioning of farming practices, while fostering a learning process through farmer-agronomist discussions. Meanwhile, the scope of the problem was iteratively outlined during the process, driven by the need to seek trade-offs between all of the constraints, and informed by model feedback. This approach allowed farmers to explore and assess disruptive scenarios, in turn facilitating informed decisions that jointly addressed agroecological and operational objectives on their farms.</div></div><div><h3>Significance</h3><div>The framework presented and illustrated in this study provides a basis for exploring and optimizing spatiotemporal cropping arrangements in diversified cropping systems.</div></div>","PeriodicalId":7730,"journal":{"name":"Agricultural Systems","volume":"222 ","pages":"Article 104154"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining constraint programming and a participatory approach to design agroecological cropping systems\",\"authors\":\"Margot Challand , Philippe Vismara , Stephane de Tourdonnet\",\"doi\":\"10.1016/j.agsy.2024.104154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><div>Agroecology implementation around the world have shown that increasing the complexity of the agroecosystem leads to increased resilience, lower dependence on synthetic inputs, the provision of ecosystem services and improved performance. However, designing diversified agroecosystems is particularly complex because of the diverse factors to take into account for each specific local context and the range of possible spatiotemporal crop combinations.</div></div><div><h3>Objective</h3><div>Here we propose an iterative agroecological design approach combining artificial intelligence with constraint programming and co-design workshops with farmers to explore and optimize spatiotemporal cropping arrangements in diversified cropping systems.</div></div><div><h3>Methods</h3><div>Our iterative approach comprises a three-step loop for designing new cropping systems: 1) identifying problem data and spatiotemporal constraints; 2) applying a flexible constraint programming model, and refining/removing constraints iteratively with farmers' input until a solution is found; and 3) evaluating solutions through model assessment and workshops with farmers, leading to the design of a new scenario if necessary (repeating step 2). We applied our approach to a case study involving diversified mixed fruit tree–vegetable cropping systems in southern France, whereby farmers were involved in co-design workshops with an agronomist.</div></div><div><h3>Results and conclusions</h3><div>The constraint programming model simulated most important farmers' constraints while adapting to the input of new information during the design process. The workshops facilitated knowledge elicitation, with progressive questioning of farming practices, while fostering a learning process through farmer-agronomist discussions. Meanwhile, the scope of the problem was iteratively outlined during the process, driven by the need to seek trade-offs between all of the constraints, and informed by model feedback. This approach allowed farmers to explore and assess disruptive scenarios, in turn facilitating informed decisions that jointly addressed agroecological and operational objectives on their farms.</div></div><div><h3>Significance</h3><div>The framework presented and illustrated in this study provides a basis for exploring and optimizing spatiotemporal cropping arrangements in diversified cropping systems.</div></div>\",\"PeriodicalId\":7730,\"journal\":{\"name\":\"Agricultural Systems\",\"volume\":\"222 \",\"pages\":\"Article 104154\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Systems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308521X24003044\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Systems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308521X24003044","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Combining constraint programming and a participatory approach to design agroecological cropping systems
Context
Agroecology implementation around the world have shown that increasing the complexity of the agroecosystem leads to increased resilience, lower dependence on synthetic inputs, the provision of ecosystem services and improved performance. However, designing diversified agroecosystems is particularly complex because of the diverse factors to take into account for each specific local context and the range of possible spatiotemporal crop combinations.
Objective
Here we propose an iterative agroecological design approach combining artificial intelligence with constraint programming and co-design workshops with farmers to explore and optimize spatiotemporal cropping arrangements in diversified cropping systems.
Methods
Our iterative approach comprises a three-step loop for designing new cropping systems: 1) identifying problem data and spatiotemporal constraints; 2) applying a flexible constraint programming model, and refining/removing constraints iteratively with farmers' input until a solution is found; and 3) evaluating solutions through model assessment and workshops with farmers, leading to the design of a new scenario if necessary (repeating step 2). We applied our approach to a case study involving diversified mixed fruit tree–vegetable cropping systems in southern France, whereby farmers were involved in co-design workshops with an agronomist.
Results and conclusions
The constraint programming model simulated most important farmers' constraints while adapting to the input of new information during the design process. The workshops facilitated knowledge elicitation, with progressive questioning of farming practices, while fostering a learning process through farmer-agronomist discussions. Meanwhile, the scope of the problem was iteratively outlined during the process, driven by the need to seek trade-offs between all of the constraints, and informed by model feedback. This approach allowed farmers to explore and assess disruptive scenarios, in turn facilitating informed decisions that jointly addressed agroecological and operational objectives on their farms.
Significance
The framework presented and illustrated in this study provides a basis for exploring and optimizing spatiotemporal cropping arrangements in diversified cropping systems.
期刊介绍:
Agricultural Systems is an international journal that deals with interactions - among the components of agricultural systems, among hierarchical levels of agricultural systems, between agricultural and other land use systems, and between agricultural systems and their natural, social and economic environments.
The scope includes the development and application of systems analysis methodologies in the following areas:
Systems approaches in the sustainable intensification of agriculture; pathways for sustainable intensification; crop-livestock integration; farm-level resource allocation; quantification of benefits and trade-offs at farm to landscape levels; integrative, participatory and dynamic modelling approaches for qualitative and quantitative assessments of agricultural systems and decision making;
The interactions between agricultural and non-agricultural landscapes; the multiple services of agricultural systems; food security and the environment;
Global change and adaptation science; transformational adaptations as driven by changes in climate, policy, values and attitudes influencing the design of farming systems;
Development and application of farming systems design tools and methods for impact, scenario and case study analysis; managing the complexities of dynamic agricultural systems; innovation systems and multi stakeholder arrangements that support or promote change and (or) inform policy decisions.