Sijin Dong , Xin Gu , Yapeng Li , Longfei Du , Xinyu Lv , Fei Pang , Akang Cui , Kaiyuan Zhang , Mengdi Zhang , Qingshan Zhao , Bin Wang , Han Hu , Mingbo Wu
{"title":"膨胀石墨中的机械诱导表面缺陷工程,促进先进钾离子电池的低压插层动力学","authors":"Sijin Dong , Xin Gu , Yapeng Li , Longfei Du , Xinyu Lv , Fei Pang , Akang Cui , Kaiyuan Zhang , Mengdi Zhang , Qingshan Zhao , Bin Wang , Han Hu , Mingbo Wu","doi":"10.1016/j.carbon.2024.119791","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing carbon materials' low-potential K<sup>+</sup> intercalation capacity is an essential topic in potassium-ion batteries (PIBs). Nevertheless, conventional methods effectively improve performance by increasing the surface area and active sites, but always at the expense of initial coulombic efficiency (ICE). Herein, an efficient and convenient strategy is proposed to construct self-doped defective carbon nanosheets (SDCS) using the mechanical ball-milling technique. This in situ defect engineering increases K<sup>+</sup> intercalation sites and shortens the ionic pathway, enhancing the ionic intercalation kinetics, specific capacity, and ICE. As expected, the SDCS-24 electrode delivers an ultra-high low-potential capacity of 314.3 mAh g<sup>−1</sup> below 0.5 V, high ICE of 76.1 %, and long-term cycle stability (300.1 mAh g<sup>−1</sup> after 1800 cycles at 1 C). The K<sup>+</sup> storage mechanism is determined by ex situ XRD and in situ Raman. The full-cell with 3,4,9,10-Perylenetetracarboxylic dianhydride cathode and SDCS-24 anode further confirms its promising application. This work presents a strategy for designing self-doped defective carbons in situ and provides insights into the potassium storage mechanism at low potential.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"232 ","pages":"Article 119791"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically induced surface defect engineering in expanded graphite to boost the low-voltage intercalation kinetics for advanced potassium-ion batteries\",\"authors\":\"Sijin Dong , Xin Gu , Yapeng Li , Longfei Du , Xinyu Lv , Fei Pang , Akang Cui , Kaiyuan Zhang , Mengdi Zhang , Qingshan Zhao , Bin Wang , Han Hu , Mingbo Wu\",\"doi\":\"10.1016/j.carbon.2024.119791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enhancing carbon materials' low-potential K<sup>+</sup> intercalation capacity is an essential topic in potassium-ion batteries (PIBs). Nevertheless, conventional methods effectively improve performance by increasing the surface area and active sites, but always at the expense of initial coulombic efficiency (ICE). Herein, an efficient and convenient strategy is proposed to construct self-doped defective carbon nanosheets (SDCS) using the mechanical ball-milling technique. This in situ defect engineering increases K<sup>+</sup> intercalation sites and shortens the ionic pathway, enhancing the ionic intercalation kinetics, specific capacity, and ICE. As expected, the SDCS-24 electrode delivers an ultra-high low-potential capacity of 314.3 mAh g<sup>−1</sup> below 0.5 V, high ICE of 76.1 %, and long-term cycle stability (300.1 mAh g<sup>−1</sup> after 1800 cycles at 1 C). The K<sup>+</sup> storage mechanism is determined by ex situ XRD and in situ Raman. The full-cell with 3,4,9,10-Perylenetetracarboxylic dianhydride cathode and SDCS-24 anode further confirms its promising application. This work presents a strategy for designing self-doped defective carbons in situ and provides insights into the potassium storage mechanism at low potential.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"232 \",\"pages\":\"Article 119791\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324010108\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010108","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
提高碳材料的低电位 K+ 插层能力是钾离子电池(PIB)的一个重要课题。然而,传统方法通过增加表面积和活性位点来有效提高性能,但总是以牺牲初始库仑效率(ICE)为代价。本文提出了一种高效便捷的策略,利用机械球磨技术构建自掺杂缺陷碳纳米片(SDCS)。这种原位缺陷工程增加了 K+ 插层位点,缩短了离子通道,从而提高了离子插层动力学、比容量和 ICE。正如预期的那样,SDCS-24 电极在 0.5 V 以下具有 314.3 mAh g-1 的超高低电位容量、76.1 % 的高 ICE 和长期循环稳定性(在 1 C 下循环 1800 次后达到 300.1 mAh g-1)。K+ 储存机制是通过原位 XRD 和原位拉曼来确定的。使用 3,4,9,10-Perylenetetracarboxylic dianhydride 阴极和 SDCS-24 阳极的全电池进一步证实了其应用前景。这项工作提出了一种原位设计自掺杂缺陷碳的策略,并为低电位下的钾存储机制提供了深入的见解。
Mechanically induced surface defect engineering in expanded graphite to boost the low-voltage intercalation kinetics for advanced potassium-ion batteries
Enhancing carbon materials' low-potential K+ intercalation capacity is an essential topic in potassium-ion batteries (PIBs). Nevertheless, conventional methods effectively improve performance by increasing the surface area and active sites, but always at the expense of initial coulombic efficiency (ICE). Herein, an efficient and convenient strategy is proposed to construct self-doped defective carbon nanosheets (SDCS) using the mechanical ball-milling technique. This in situ defect engineering increases K+ intercalation sites and shortens the ionic pathway, enhancing the ionic intercalation kinetics, specific capacity, and ICE. As expected, the SDCS-24 electrode delivers an ultra-high low-potential capacity of 314.3 mAh g−1 below 0.5 V, high ICE of 76.1 %, and long-term cycle stability (300.1 mAh g−1 after 1800 cycles at 1 C). The K+ storage mechanism is determined by ex situ XRD and in situ Raman. The full-cell with 3,4,9,10-Perylenetetracarboxylic dianhydride cathode and SDCS-24 anode further confirms its promising application. This work presents a strategy for designing self-doped defective carbons in situ and provides insights into the potassium storage mechanism at low potential.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.