{"title":"变水深非断裂长波传播的八种弱色散布森斯克模型比较","authors":"Guillaume Coulaud , Maria Teles , Michel Benoit","doi":"10.1016/j.coastaleng.2024.104645","DOIUrl":null,"url":null,"abstract":"<div><div>Weakly dispersive Boussinesq-type models are extensively used to model long-wave propagation in coastal areas and their interaction with coastal infrastructures. Many equations falling in this category have been formulated during the last decades, but few detailed comparisons between them can be found in the literature. In this work, we investigate theoretically and with computational experiments eight variants of the most popular models used by the coastal engineering community. Both weakly nonlinear and fully nonlinear models are considered, hoping to understand better when the additional complexity of the latter class of models is necessary or justified. We provide an overview and discuss the properties of these models, including the linear dispersion relation in uniform water depth, the second-order nonlinear coupling coefficient, the shoaling gradient, and the sensitivity to wave trough instabilities. The models are then numerically discretised using the same general strategy in a single numerical code, using fourth-order methods for time and space discretisation. Their capacity to simulate coastal wave propagation and their transformation when approaching the shore is assessed on three challenging one-dimensional benchmarks. It appears that fully nonlinear models are more consistent than their weakly nonlinear counterparts, which can occasionally perform better but show different behaviours depending on the case.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104645"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of eight weakly dispersive Boussinesq-type models for non-breaking long-wave propagation in variable water depth\",\"authors\":\"Guillaume Coulaud , Maria Teles , Michel Benoit\",\"doi\":\"10.1016/j.coastaleng.2024.104645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Weakly dispersive Boussinesq-type models are extensively used to model long-wave propagation in coastal areas and their interaction with coastal infrastructures. Many equations falling in this category have been formulated during the last decades, but few detailed comparisons between them can be found in the literature. In this work, we investigate theoretically and with computational experiments eight variants of the most popular models used by the coastal engineering community. Both weakly nonlinear and fully nonlinear models are considered, hoping to understand better when the additional complexity of the latter class of models is necessary or justified. We provide an overview and discuss the properties of these models, including the linear dispersion relation in uniform water depth, the second-order nonlinear coupling coefficient, the shoaling gradient, and the sensitivity to wave trough instabilities. The models are then numerically discretised using the same general strategy in a single numerical code, using fourth-order methods for time and space discretisation. Their capacity to simulate coastal wave propagation and their transformation when approaching the shore is assessed on three challenging one-dimensional benchmarks. It appears that fully nonlinear models are more consistent than their weakly nonlinear counterparts, which can occasionally perform better but show different behaviours depending on the case.</div></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"195 \",\"pages\":\"Article 104645\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001935\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001935","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A comparison of eight weakly dispersive Boussinesq-type models for non-breaking long-wave propagation in variable water depth
Weakly dispersive Boussinesq-type models are extensively used to model long-wave propagation in coastal areas and their interaction with coastal infrastructures. Many equations falling in this category have been formulated during the last decades, but few detailed comparisons between them can be found in the literature. In this work, we investigate theoretically and with computational experiments eight variants of the most popular models used by the coastal engineering community. Both weakly nonlinear and fully nonlinear models are considered, hoping to understand better when the additional complexity of the latter class of models is necessary or justified. We provide an overview and discuss the properties of these models, including the linear dispersion relation in uniform water depth, the second-order nonlinear coupling coefficient, the shoaling gradient, and the sensitivity to wave trough instabilities. The models are then numerically discretised using the same general strategy in a single numerical code, using fourth-order methods for time and space discretisation. Their capacity to simulate coastal wave propagation and their transformation when approaching the shore is assessed on three challenging one-dimensional benchmarks. It appears that fully nonlinear models are more consistent than their weakly nonlinear counterparts, which can occasionally perform better but show different behaviours depending on the case.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.