ADRP-DQL:使用深度 Q 学习的水下声学传感器网络自适应分布式路由协议

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-10-28 DOI:10.1016/j.adhoc.2024.103692
Adi Surendra Mohanraju M., Anjaneyulu Lokam
{"title":"ADRP-DQL:使用深度 Q 学习的水下声学传感器网络自适应分布式路由协议","authors":"Adi Surendra Mohanraju M.,&nbsp;Anjaneyulu Lokam","doi":"10.1016/j.adhoc.2024.103692","DOIUrl":null,"url":null,"abstract":"<div><div>Underwater Wireless Sensor Networks (UWSNs) face unique constraints due to their unstructured and dynamic underwater environment. Data gathering from these networks is crucial as energy resources are limited. In this regard, efficient routing protocols are needed to optimize energy consumption, increase the network lifetime, and enhance data delivery in these networks. In this work, we develop an Adaptive Distributed Routing Protocol for UWSNs using Deep Q-Learning (ADRP-DQL). This protocol employs the ability of reinforcement learning to dynamically learn the best routing decisions based on the network’s state and action-value estimates. It allows nodes to make intelligent routing decisions, considering residual energy, depth and node degree. A Deep Q-Network (DQN) is employed as the function approximator to estimate action values and choose the optimal routing decisions. The DQN is trained using off-policy and on-policy strategies and the neural network model. Simulation results demonstrate that ADRP-DQL performs well regarding energy efficiency (EE), data delivery ratio, and network lifetime. The results highlight the proposed protocol’s effectiveness and adaptability to UWSNs. The ADRP-DQL protocol contributes to intelligent routing for UWSNs, offering a promising approach to enhance performance and optimize energy utilization in these demanding environments.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADRP-DQL: An adaptive distributed routing protocol for underwater acoustic sensor networks using deep Q-learning\",\"authors\":\"Adi Surendra Mohanraju M.,&nbsp;Anjaneyulu Lokam\",\"doi\":\"10.1016/j.adhoc.2024.103692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Underwater Wireless Sensor Networks (UWSNs) face unique constraints due to their unstructured and dynamic underwater environment. Data gathering from these networks is crucial as energy resources are limited. In this regard, efficient routing protocols are needed to optimize energy consumption, increase the network lifetime, and enhance data delivery in these networks. In this work, we develop an Adaptive Distributed Routing Protocol for UWSNs using Deep Q-Learning (ADRP-DQL). This protocol employs the ability of reinforcement learning to dynamically learn the best routing decisions based on the network’s state and action-value estimates. It allows nodes to make intelligent routing decisions, considering residual energy, depth and node degree. A Deep Q-Network (DQN) is employed as the function approximator to estimate action values and choose the optimal routing decisions. The DQN is trained using off-policy and on-policy strategies and the neural network model. Simulation results demonstrate that ADRP-DQL performs well regarding energy efficiency (EE), data delivery ratio, and network lifetime. The results highlight the proposed protocol’s effectiveness and adaptability to UWSNs. The ADRP-DQL protocol contributes to intelligent routing for UWSNs, offering a promising approach to enhance performance and optimize energy utilization in these demanding environments.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524003032\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524003032","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

水下无线传感器网络(UWSN)因其非结构化和动态的水下环境而面临独特的限制。由于能源资源有限,从这些网络收集数据至关重要。在这方面,需要高效的路由协议来优化能源消耗、延长网络寿命并加强这些网络的数据传输。在这项工作中,我们开发了一种使用深度 Q 学习的 UWSN 自适应分布式路由协议(ADRP-DQL)。该协议利用强化学习的能力,根据网络状态和行动值估计动态学习最佳路由决策。它允许节点在考虑剩余能量、深度和节点度的情况下做出智能路由决策。深度 Q 网络(DQN)被用作函数近似器,用于估计行动值和选择最佳路由决策。DQN 使用非策略和策略策略以及神经网络模型进行训练。仿真结果表明,ADRP-DQL 在能效(EE)、数据交付率和网络寿命方面表现良好。这些结果凸显了所提协议的有效性和对 UWSN 的适应性。ADRP-DQL 协议为 UWSN 的智能路由做出了贡献,为在这些要求苛刻的环境中提高性能和优化能源利用提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADRP-DQL: An adaptive distributed routing protocol for underwater acoustic sensor networks using deep Q-learning
Underwater Wireless Sensor Networks (UWSNs) face unique constraints due to their unstructured and dynamic underwater environment. Data gathering from these networks is crucial as energy resources are limited. In this regard, efficient routing protocols are needed to optimize energy consumption, increase the network lifetime, and enhance data delivery in these networks. In this work, we develop an Adaptive Distributed Routing Protocol for UWSNs using Deep Q-Learning (ADRP-DQL). This protocol employs the ability of reinforcement learning to dynamically learn the best routing decisions based on the network’s state and action-value estimates. It allows nodes to make intelligent routing decisions, considering residual energy, depth and node degree. A Deep Q-Network (DQN) is employed as the function approximator to estimate action values and choose the optimal routing decisions. The DQN is trained using off-policy and on-policy strategies and the neural network model. Simulation results demonstrate that ADRP-DQL performs well regarding energy efficiency (EE), data delivery ratio, and network lifetime. The results highlight the proposed protocol’s effectiveness and adaptability to UWSNs. The ADRP-DQL protocol contributes to intelligent routing for UWSNs, offering a promising approach to enhance performance and optimize energy utilization in these demanding environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
Transitive reasoning: A high-performance computing model for significant pattern discovery in cognitive IoT sensor network Deep learning with synthetic data for wireless NLOS positioning with a single base station ADRP-DQL: An adaptive distributed routing protocol for underwater acoustic sensor networks using deep Q-learning A context-aware zero trust-based hybrid approach to IoT-based self-driving vehicles security BLE-based sensors for privacy-enabled contagious disease monitoring with zero trust architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1