{"title":"强金属-支撑相互作用的动力学:通过实验和模拟方法研究 CdS 纳米棒上的铂和铂基合金","authors":"","doi":"10.1016/j.nantod.2024.102543","DOIUrl":null,"url":null,"abstract":"<div><div>The catalytic performance of supported metal nanoparticles (NPs) is greatly affected by metal-support interaction (MSI). Understanding the mechanisms and dynamics of MSI in heterogeneous catalysis remains challenging. Traditionally, MSI studies have focused on metal oxide supports and rarely compared MSI between Pt and Pt-based alloys, despite the importance of Pt in catalysis. In this study, we introduce CdS nanorods as a novel support material and investigate the MSI behavior of both Pt and Pt-based alloy NPs using in situ TEM electron beam irradiation. Our findings show that Pt NPs have strong MSI with CdS and that encapsulation layers form over Pt NPs because Pt has the high surface energy. On the other hand, Pt-based alloys have weaker MSI. These experiments were validated by direct thermal annealing for four hours. Molecular dynamics simulations were used to explain the observed behavior, providing insights into how the surface energy differences between Pt and Pt-based alloys influence their interactions with CdS nanorods. These findings offer valuable insights into catalyst design, highlighting the potential for controlling MSI strength to optimize catalytic performance in heterogeneous systems.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":null,"pages":null},"PeriodicalIF":13.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of strong metal-support interactions: Investigating Pt and Pt-based alloys on CdS nanorods through experimental and simulated approaches\",\"authors\":\"\",\"doi\":\"10.1016/j.nantod.2024.102543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The catalytic performance of supported metal nanoparticles (NPs) is greatly affected by metal-support interaction (MSI). Understanding the mechanisms and dynamics of MSI in heterogeneous catalysis remains challenging. Traditionally, MSI studies have focused on metal oxide supports and rarely compared MSI between Pt and Pt-based alloys, despite the importance of Pt in catalysis. In this study, we introduce CdS nanorods as a novel support material and investigate the MSI behavior of both Pt and Pt-based alloy NPs using in situ TEM electron beam irradiation. Our findings show that Pt NPs have strong MSI with CdS and that encapsulation layers form over Pt NPs because Pt has the high surface energy. On the other hand, Pt-based alloys have weaker MSI. These experiments were validated by direct thermal annealing for four hours. Molecular dynamics simulations were used to explain the observed behavior, providing insights into how the surface energy differences between Pt and Pt-based alloys influence their interactions with CdS nanorods. These findings offer valuable insights into catalyst design, highlighting the potential for controlling MSI strength to optimize catalytic performance in heterogeneous systems.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003992\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003992","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics of strong metal-support interactions: Investigating Pt and Pt-based alloys on CdS nanorods through experimental and simulated approaches
The catalytic performance of supported metal nanoparticles (NPs) is greatly affected by metal-support interaction (MSI). Understanding the mechanisms and dynamics of MSI in heterogeneous catalysis remains challenging. Traditionally, MSI studies have focused on metal oxide supports and rarely compared MSI between Pt and Pt-based alloys, despite the importance of Pt in catalysis. In this study, we introduce CdS nanorods as a novel support material and investigate the MSI behavior of both Pt and Pt-based alloy NPs using in situ TEM electron beam irradiation. Our findings show that Pt NPs have strong MSI with CdS and that encapsulation layers form over Pt NPs because Pt has the high surface energy. On the other hand, Pt-based alloys have weaker MSI. These experiments were validated by direct thermal annealing for four hours. Molecular dynamics simulations were used to explain the observed behavior, providing insights into how the surface energy differences between Pt and Pt-based alloys influence their interactions with CdS nanorods. These findings offer valuable insights into catalyst design, highlighting the potential for controlling MSI strength to optimize catalytic performance in heterogeneous systems.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.