玻璃钢纤维取向对玻璃钢-混凝土-钢管梁四点弯曲性能的影响:实验研究与建模

IF 5.6 1区 工程技术 Q1 ENGINEERING, CIVIL Engineering Structures Pub Date : 2024-11-01 DOI:10.1016/j.engstruct.2024.119191
Bing Zhang , Chong Zhou , Sumei Zhang , Yutao Peng , Ye Li
{"title":"玻璃钢纤维取向对玻璃钢-混凝土-钢管梁四点弯曲性能的影响:实验研究与建模","authors":"Bing Zhang ,&nbsp;Chong Zhou ,&nbsp;Sumei Zhang ,&nbsp;Yutao Peng ,&nbsp;Ye Li","doi":"10.1016/j.engstruct.2024.119191","DOIUrl":null,"url":null,"abstract":"<div><div>FRP-concrete-steel double-skin tubular beams (DSTBs), comprising an inner steel tube, an outer FRP tube, and an intermediate concrete layer, are increasingly used in bridge structures. Previous research has mainly concentrated on DSTBs with FRP tubes featuring fibers oriented in or near the hoop direction. However, such orientations can result in cracking of the FRP tube under early loading or normal service conditions due to inadequate longitudinal tensile strength. This cracking compromises the corrosion resistance and long-term serviceability of DSTBs. To address this issue, this study systematically investigates the effects of different fiber orientations ( ± 80°, ± 60°, and ± 45° relative to the longitudinal direction) on the four-point bending performance of DSTBs. Key experimental and theoretical findings include: (1) All DSTBs demonstrated excellent ductility under four-point bending, regardless of the FRP fiber orientations. (2) ± 60° and ± 80° fiber-wound FRP tubes exhibited significant tensile-side cracking, with cracks propagating along the fiber winding direction. Conversely, ± 45° fiber-wound FRP tubes showed superior cracking resistance and provided adequate longitudinal tensile capacity on the tensile side. (3) The bending capacity was highest in specimens with ± 45° fiber-wound FRP tubes, followed by those with ± 60° tubes, and lowest for those with ± 80° tubes. (4) The inclusion of shear studs could effectively mitigate the relative slippage between the concrete and steel tube. (5) The bending performance of DSTBs was simulated using OpenSees, with the constitutive model of the FRP tubes carefully accounting for the stress states associated with different fiber orientations during failure. The developed numerical model accurately predicted the load-deflection curves of DSTBs, but featuring with a conservative trend. The findings of this study confirm that optimizing fiber orientation is crucial for enhancing the performance and durability of DSTBs in practical applications.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"322 ","pages":"Article 119191"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of FRP fiber orientations on four-point bending behaviour of FRP-concrete-steel tubular beams: Experimental study and modeling\",\"authors\":\"Bing Zhang ,&nbsp;Chong Zhou ,&nbsp;Sumei Zhang ,&nbsp;Yutao Peng ,&nbsp;Ye Li\",\"doi\":\"10.1016/j.engstruct.2024.119191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>FRP-concrete-steel double-skin tubular beams (DSTBs), comprising an inner steel tube, an outer FRP tube, and an intermediate concrete layer, are increasingly used in bridge structures. Previous research has mainly concentrated on DSTBs with FRP tubes featuring fibers oriented in or near the hoop direction. However, such orientations can result in cracking of the FRP tube under early loading or normal service conditions due to inadequate longitudinal tensile strength. This cracking compromises the corrosion resistance and long-term serviceability of DSTBs. To address this issue, this study systematically investigates the effects of different fiber orientations ( ± 80°, ± 60°, and ± 45° relative to the longitudinal direction) on the four-point bending performance of DSTBs. Key experimental and theoretical findings include: (1) All DSTBs demonstrated excellent ductility under four-point bending, regardless of the FRP fiber orientations. (2) ± 60° and ± 80° fiber-wound FRP tubes exhibited significant tensile-side cracking, with cracks propagating along the fiber winding direction. Conversely, ± 45° fiber-wound FRP tubes showed superior cracking resistance and provided adequate longitudinal tensile capacity on the tensile side. (3) The bending capacity was highest in specimens with ± 45° fiber-wound FRP tubes, followed by those with ± 60° tubes, and lowest for those with ± 80° tubes. (4) The inclusion of shear studs could effectively mitigate the relative slippage between the concrete and steel tube. (5) The bending performance of DSTBs was simulated using OpenSees, with the constitutive model of the FRP tubes carefully accounting for the stress states associated with different fiber orientations during failure. The developed numerical model accurately predicted the load-deflection curves of DSTBs, but featuring with a conservative trend. The findings of this study confirm that optimizing fiber orientation is crucial for enhancing the performance and durability of DSTBs in practical applications.</div></div>\",\"PeriodicalId\":11763,\"journal\":{\"name\":\"Engineering Structures\",\"volume\":\"322 \",\"pages\":\"Article 119191\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014102962401753X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014102962401753X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

由内钢管、外玻璃钢管和中间混凝土层组成的玻璃钢-混凝土-钢双层管梁(DSTB)在桥梁结构中的应用越来越广泛。以往的研究主要集中在带有玻璃钢管的 DSTB,其特点是纤维在箍筋方向或附近定向。然而,由于纵向拉伸强度不足,这种取向会导致玻璃钢管在早期加载或正常使用条件下开裂。这种开裂会影响 DSTB 的耐腐蚀性和长期使用性能。为解决这一问题,本研究系统地探讨了不同纤维取向(相对于纵向的± 80°、± 60°和± 45°)对 DSTB 四点弯曲性能的影响。主要的实验和理论发现包括(1) 无论玻璃钢纤维取向如何,所有 DSTB 在四点弯曲下都表现出优异的延展性。(2)± 60° 和 ± 80° 纤维缠绕玻璃钢管表现出明显的拉伸侧开裂,裂纹沿纤维缠绕方向扩展。相反,± 45° 纤维缠绕玻璃钢管的抗开裂性能优越,在拉伸侧具有足够的纵向抗拉能力。(3) 采用± 45° 纤维缠绕玻璃钢管的试样弯曲能力最高,其次是采用± 60° 纤维缠绕玻璃钢管的试样,而采用± 80° 纤维缠绕玻璃钢管的试样弯曲能力最低。(4) 加入剪力螺栓可有效缓解混凝土与钢管之间的相对滑移。(5) 使用 OpenSees 对 DSTB 的弯曲性能进行了模拟,玻璃钢管的构成模型仔细考虑了不同纤维取向在破坏过程中的应力状态。所开发的数值模型准确预测了 DSTB 的载荷-挠度曲线,但具有保守趋势。研究结果证实,在实际应用中,优化纤维取向对于提高 DSTB 的性能和耐用性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of FRP fiber orientations on four-point bending behaviour of FRP-concrete-steel tubular beams: Experimental study and modeling
FRP-concrete-steel double-skin tubular beams (DSTBs), comprising an inner steel tube, an outer FRP tube, and an intermediate concrete layer, are increasingly used in bridge structures. Previous research has mainly concentrated on DSTBs with FRP tubes featuring fibers oriented in or near the hoop direction. However, such orientations can result in cracking of the FRP tube under early loading or normal service conditions due to inadequate longitudinal tensile strength. This cracking compromises the corrosion resistance and long-term serviceability of DSTBs. To address this issue, this study systematically investigates the effects of different fiber orientations ( ± 80°, ± 60°, and ± 45° relative to the longitudinal direction) on the four-point bending performance of DSTBs. Key experimental and theoretical findings include: (1) All DSTBs demonstrated excellent ductility under four-point bending, regardless of the FRP fiber orientations. (2) ± 60° and ± 80° fiber-wound FRP tubes exhibited significant tensile-side cracking, with cracks propagating along the fiber winding direction. Conversely, ± 45° fiber-wound FRP tubes showed superior cracking resistance and provided adequate longitudinal tensile capacity on the tensile side. (3) The bending capacity was highest in specimens with ± 45° fiber-wound FRP tubes, followed by those with ± 60° tubes, and lowest for those with ± 80° tubes. (4) The inclusion of shear studs could effectively mitigate the relative slippage between the concrete and steel tube. (5) The bending performance of DSTBs was simulated using OpenSees, with the constitutive model of the FRP tubes carefully accounting for the stress states associated with different fiber orientations during failure. The developed numerical model accurately predicted the load-deflection curves of DSTBs, but featuring with a conservative trend. The findings of this study confirm that optimizing fiber orientation is crucial for enhancing the performance and durability of DSTBs in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Structures
Engineering Structures 工程技术-工程:土木
CiteScore
10.20
自引率
14.50%
发文量
1385
审稿时长
67 days
期刊介绍: Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed. The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering. Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels. Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.
期刊最新文献
Shear behaviour of deep beams strengthened with high-strength fiber reinforced concrete jackets Design of 3D printed concrete masonry for wall structures: Mechanical behavior and strength calculation methods under various loads Effect of high-strength SCC with and without steel fibres on the shear behaviour of dry joints in PCSBs Utilizing realistic loading histories for the calibration of nonlinear components in seismic analysis Physically-based collapse failure criteria in progressive collapse analyses of random-parameter multi-story RC structures subjected to column removal scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1