{"title":"通过钛铁渣的相重构和镁元素迁移稳定蓄热陶瓷","authors":"Mengting Jiang, Xiaopeng Li, Tengfei Deng","doi":"10.1111/jace.20154","DOIUrl":null,"url":null,"abstract":"<p>In this study, aluminum titanate/anorthite (Al<sub>2</sub>TiO<sub>5</sub>-CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>) ceramics were fabricated from ferrotitanium slag through phase reconstruction. Stabilization of the ceramic was achieved by migration of Mg element into Al<sub>2</sub>TiO<sub>5</sub> phase. The results indicated that optimal performance was achieved with the addition of 4 wt% MgO and 60 wt% ferrotitanium slag at 1370°C. The ceramic exhibited bulk density of 3.11 ± 0.01 g/cm<sup>3</sup>, thermal storage density of 1.51 kJ/cm<sup>3</sup>, and thermal expansion coefficient of 3.40 × 10<sup>−6</sup>/°C (1000°C), respectively. Additionally, the solid solution of Mg<sup>2+</sup> in the Al<sub>2</sub>TiO<sub>5</sub> lattice reduced the formation of microcracks and enhanced the mass transfer process. Consequently, the sintering temperature decreased from 1415°C to 1370°C while the bending strength increased from 61.25 ± 1.05 MPa to 75.92 ± 7.72 MPa. Furthermore, finite element simulation demonstrated that higher thermal expansion led to concentrated thermal stress, potentially increasing the possibility of ceramic cracking. This research provides a new strategy for preparing low thermal expansion ceramics from titanium-containing solid waste.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of thermal storage ceramics via the phase reconstruction of ferrotitanium slag and migration of Mg element\",\"authors\":\"Mengting Jiang, Xiaopeng Li, Tengfei Deng\",\"doi\":\"10.1111/jace.20154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, aluminum titanate/anorthite (Al<sub>2</sub>TiO<sub>5</sub>-CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>) ceramics were fabricated from ferrotitanium slag through phase reconstruction. Stabilization of the ceramic was achieved by migration of Mg element into Al<sub>2</sub>TiO<sub>5</sub> phase. The results indicated that optimal performance was achieved with the addition of 4 wt% MgO and 60 wt% ferrotitanium slag at 1370°C. The ceramic exhibited bulk density of 3.11 ± 0.01 g/cm<sup>3</sup>, thermal storage density of 1.51 kJ/cm<sup>3</sup>, and thermal expansion coefficient of 3.40 × 10<sup>−6</sup>/°C (1000°C), respectively. Additionally, the solid solution of Mg<sup>2+</sup> in the Al<sub>2</sub>TiO<sub>5</sub> lattice reduced the formation of microcracks and enhanced the mass transfer process. Consequently, the sintering temperature decreased from 1415°C to 1370°C while the bending strength increased from 61.25 ± 1.05 MPa to 75.92 ± 7.72 MPa. Furthermore, finite element simulation demonstrated that higher thermal expansion led to concentrated thermal stress, potentially increasing the possibility of ceramic cracking. This research provides a new strategy for preparing low thermal expansion ceramics from titanium-containing solid waste.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20154\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20154","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Stabilization of thermal storage ceramics via the phase reconstruction of ferrotitanium slag and migration of Mg element
In this study, aluminum titanate/anorthite (Al2TiO5-CaAl2Si2O8) ceramics were fabricated from ferrotitanium slag through phase reconstruction. Stabilization of the ceramic was achieved by migration of Mg element into Al2TiO5 phase. The results indicated that optimal performance was achieved with the addition of 4 wt% MgO and 60 wt% ferrotitanium slag at 1370°C. The ceramic exhibited bulk density of 3.11 ± 0.01 g/cm3, thermal storage density of 1.51 kJ/cm3, and thermal expansion coefficient of 3.40 × 10−6/°C (1000°C), respectively. Additionally, the solid solution of Mg2+ in the Al2TiO5 lattice reduced the formation of microcracks and enhanced the mass transfer process. Consequently, the sintering temperature decreased from 1415°C to 1370°C while the bending strength increased from 61.25 ± 1.05 MPa to 75.92 ± 7.72 MPa. Furthermore, finite element simulation demonstrated that higher thermal expansion led to concentrated thermal stress, potentially increasing the possibility of ceramic cracking. This research provides a new strategy for preparing low thermal expansion ceramics from titanium-containing solid waste.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.