Michael D. Garber, Tarik Benmarhnia, Weiqi Zhou, Pierpaolo Mudu, David Rojas-Rueda
{"title":"根据人口密度和生态区绿化城市地区可降低过早死亡率","authors":"Michael D. Garber, Tarik Benmarhnia, Weiqi Zhou, Pierpaolo Mudu, David Rojas-Rueda","doi":"10.1038/s43247-024-01803-y","DOIUrl":null,"url":null,"abstract":"Urban green space and urban compactness are each important principles for designing healthy, climate-resilient cities. The principles can co-exist, but greening may come at density’s expense if not considered deliberately. Existing studies estimating health impacts of greening scenarios have not considered what level of greenness is attainable for different population densities. Here, using the square kilometer as the unit of analysis, we estimate non-accidental mortality that could be prevented among adults older than 30 by greening that small area to a level of greenness assumed to be attainable based on its broader urban area (N = 15,917 globally), population density, and ecological zone. Results suggest a large potential for urban greening even in the most population-dense parts of cities such that on average 54 deaths per 100,000 could be prevented per year in those areas. That estimate may be about 25% higher or lower due to uncertainty in the underlying model. Greening urban areas to attainable levels for their population density and ecological zone could decrease nonaccidental mortality by about 50 deaths per year per 100,000 adults older than 30, according to epidemiologic analyses from 15,917 urban areas.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-15"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01803-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Greening urban areas in line with population density and ecological zone can reduce premature mortality\",\"authors\":\"Michael D. Garber, Tarik Benmarhnia, Weiqi Zhou, Pierpaolo Mudu, David Rojas-Rueda\",\"doi\":\"10.1038/s43247-024-01803-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban green space and urban compactness are each important principles for designing healthy, climate-resilient cities. The principles can co-exist, but greening may come at density’s expense if not considered deliberately. Existing studies estimating health impacts of greening scenarios have not considered what level of greenness is attainable for different population densities. Here, using the square kilometer as the unit of analysis, we estimate non-accidental mortality that could be prevented among adults older than 30 by greening that small area to a level of greenness assumed to be attainable based on its broader urban area (N = 15,917 globally), population density, and ecological zone. Results suggest a large potential for urban greening even in the most population-dense parts of cities such that on average 54 deaths per 100,000 could be prevented per year in those areas. That estimate may be about 25% higher or lower due to uncertainty in the underlying model. Greening urban areas to attainable levels for their population density and ecological zone could decrease nonaccidental mortality by about 50 deaths per year per 100,000 adults older than 30, according to epidemiologic analyses from 15,917 urban areas.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01803-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01803-y\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01803-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Greening urban areas in line with population density and ecological zone can reduce premature mortality
Urban green space and urban compactness are each important principles for designing healthy, climate-resilient cities. The principles can co-exist, but greening may come at density’s expense if not considered deliberately. Existing studies estimating health impacts of greening scenarios have not considered what level of greenness is attainable for different population densities. Here, using the square kilometer as the unit of analysis, we estimate non-accidental mortality that could be prevented among adults older than 30 by greening that small area to a level of greenness assumed to be attainable based on its broader urban area (N = 15,917 globally), population density, and ecological zone. Results suggest a large potential for urban greening even in the most population-dense parts of cities such that on average 54 deaths per 100,000 could be prevented per year in those areas. That estimate may be about 25% higher or lower due to uncertainty in the underlying model. Greening urban areas to attainable levels for their population density and ecological zone could decrease nonaccidental mortality by about 50 deaths per year per 100,000 adults older than 30, according to epidemiologic analyses from 15,917 urban areas.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.