可可金属 YbTi3Bi4 的多样化电子景观

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-11-03 DOI:10.1038/s43246-024-00681-3
Anup Pradhan Sakhya, Brenden R. Ortiz, Barun Ghosh, Milo Sprague, Mazharul Islam Mondal, Matthew Matzelle, Iftakhar Bin Elius, Nathan Valadez, David G. Mandrus, Arun Bansil, Madhab Neupane
{"title":"可可金属 YbTi3Bi4 的多样化电子景观","authors":"Anup Pradhan Sakhya, Brenden R. Ortiz, Barun Ghosh, Milo Sprague, Mazharul Islam Mondal, Matthew Matzelle, Iftakhar Bin Elius, Nathan Valadez, David G. Mandrus, Arun Bansil, Madhab Neupane","doi":"10.1038/s43246-024-00681-3","DOIUrl":null,"url":null,"abstract":"Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, we report the discovery of Ti-based kagome metal YbTi3Bi4 which we characterize using angle-resolved photoemission spectroscopy (ARPES) and magneto-transport, in combination with density functional theory calculations. Our ARPES results reveal the complex fermiology of YbTi3Bi4 and provide spectroscopic evidence of four flat bands. Our measurements also show the presence of multiple van Hove singularities originating from Ti 3d orbitals and a linearly-dispersing gapped Dirac-like bulk state at the $$\\overline{\\,{\\mbox{K}}\\,}$$ point in accord with our theoretical calculations. Our study establishes YbTi3Bi4 as a platform for exploring exotic phases in the wider LnTi3Bi4 (Ln = lanthanide) family of materials. Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, the discovery of a Ti-based kagome metal YbTi3Bi4 is reported, showing spectroscopic evidence of four flat bands originating from both Yb 4f and Ti 3d orbitals, multiple van Hove singularities, and a linearly dispersing gapped Dirac-like bulk state.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00681-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Diverse electronic landscape of the kagome metal YbTi3Bi4\",\"authors\":\"Anup Pradhan Sakhya, Brenden R. Ortiz, Barun Ghosh, Milo Sprague, Mazharul Islam Mondal, Matthew Matzelle, Iftakhar Bin Elius, Nathan Valadez, David G. Mandrus, Arun Bansil, Madhab Neupane\",\"doi\":\"10.1038/s43246-024-00681-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, we report the discovery of Ti-based kagome metal YbTi3Bi4 which we characterize using angle-resolved photoemission spectroscopy (ARPES) and magneto-transport, in combination with density functional theory calculations. Our ARPES results reveal the complex fermiology of YbTi3Bi4 and provide spectroscopic evidence of four flat bands. Our measurements also show the presence of multiple van Hove singularities originating from Ti 3d orbitals and a linearly-dispersing gapped Dirac-like bulk state at the $$\\\\overline{\\\\,{\\\\mbox{K}}\\\\,}$$ point in accord with our theoretical calculations. Our study establishes YbTi3Bi4 as a platform for exploring exotic phases in the wider LnTi3Bi4 (Ln = lanthanide) family of materials. Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, the discovery of a Ti-based kagome metal YbTi3Bi4 is reported, showing spectroscopic evidence of four flat bands originating from both Yb 4f and Ti 3d orbitals, multiple van Hove singularities, and a linearly dispersing gapped Dirac-like bulk state.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00681-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00681-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00681-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卡戈米晶格已成为探索材料中奇异量子现象的理想平台。在此,我们报告了钛基卡戈米金属 YbTi3Bi4 的发现,并结合密度泛函理论计算,使用角度分辨光发射光谱(ARPES)和磁传输对其进行了表征。我们的 ARPES 结果揭示了 YbTi3Bi4 的复杂费米学,并提供了四个平坦带的光谱证据。我们的测量结果还显示,在 $$overline\,{mbox{K}}\,}$ 点存在多个源于 Ti 3d 轨道的范霍夫奇点和线性弥散的间隙狄拉克样体态,这与我们的理论计算结果一致。我们的研究将 YbTi3Bi4 树立为探索更广泛的 LnTi3Bi4(Ln = 镧系元素)材料家族中奇异相的平台。卡戈米晶格已成为探索材料中奇异量子现象的理想平台。本文报告了钛基卡戈米金属 YbTi3Bi4 的发现,其光谱显示了源自镱 4f 和钛 3d 轨道的四条平带、多个范霍夫奇点以及线性弥散的间隙狄拉克样体态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diverse electronic landscape of the kagome metal YbTi3Bi4
Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, we report the discovery of Ti-based kagome metal YbTi3Bi4 which we characterize using angle-resolved photoemission spectroscopy (ARPES) and magneto-transport, in combination with density functional theory calculations. Our ARPES results reveal the complex fermiology of YbTi3Bi4 and provide spectroscopic evidence of four flat bands. Our measurements also show the presence of multiple van Hove singularities originating from Ti 3d orbitals and a linearly-dispersing gapped Dirac-like bulk state at the $$\overline{\,{\mbox{K}}\,}$$ point in accord with our theoretical calculations. Our study establishes YbTi3Bi4 as a platform for exploring exotic phases in the wider LnTi3Bi4 (Ln = lanthanide) family of materials. Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, the discovery of a Ti-based kagome metal YbTi3Bi4 is reported, showing spectroscopic evidence of four flat bands originating from both Yb 4f and Ti 3d orbitals, multiple van Hove singularities, and a linearly dispersing gapped Dirac-like bulk state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Unraveling the origin of conductivity change in Co-doped FeRh phase transition Author Correction: Electrical response and biodegradation of Sepia melanin-shellac films printed on paper Thermodynamic evidence for polaron stabilization inside the antiferromagnetic order of Eu5In2Sb6 Benefits and complexity of defects in metal-organic frameworks Multi-sensing yarns for continuous wireless sweat lactate monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1