从锥形阶段开始闪烁的 Skyrmion

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-11-04 DOI:10.1103/physrevb.110.174405
Rai M. Menezes, Milorad V. Milošević
{"title":"从锥形阶段开始闪烁的 Skyrmion","authors":"Rai M. Menezes, Milorad V. Milošević","doi":"10.1103/physrevb.110.174405","DOIUrl":null,"url":null,"abstract":"While the transition between skyrmionic and nontopological states has been widely explored as a bit operation for information transport and storage in spintronic devices, the ultrafast dynamics of such transitions remains challenging to observe and understand. Here, we utilize spin-dynamics simulations and harmonic transition state theory (HTST) to provide an in-depth analysis of the nucleation of skyrmionic states in helimagnets. We reveal a persistent blinking (creation-annihilation) phenomenon of these topological states under specific conditions near the phase boundary between skyrmion and conical states. Through a minimum-energy path analysis, we elucidate that this blinking behavior is favored by the formation of chiral bobber (CB) surface states and that the collapse of CBs differs from that of skyrmions in thin films due to their different oscillation modes. We further employ HTST to estimate the typical blinking time as a function of the applied magnetic field and temperature. Finally, we illustrate the practical use of skyrmion blinking for controlled probabilistic computing, exemplified by a skyrmion-based random-number generator.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"34 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skyrmion blinking from the conical phase\",\"authors\":\"Rai M. Menezes, Milorad V. Milošević\",\"doi\":\"10.1103/physrevb.110.174405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the transition between skyrmionic and nontopological states has been widely explored as a bit operation for information transport and storage in spintronic devices, the ultrafast dynamics of such transitions remains challenging to observe and understand. Here, we utilize spin-dynamics simulations and harmonic transition state theory (HTST) to provide an in-depth analysis of the nucleation of skyrmionic states in helimagnets. We reveal a persistent blinking (creation-annihilation) phenomenon of these topological states under specific conditions near the phase boundary between skyrmion and conical states. Through a minimum-energy path analysis, we elucidate that this blinking behavior is favored by the formation of chiral bobber (CB) surface states and that the collapse of CBs differs from that of skyrmions in thin films due to their different oscillation modes. We further employ HTST to estimate the typical blinking time as a function of the applied magnetic field and temperature. Finally, we illustrate the practical use of skyrmion blinking for controlled probabilistic computing, exemplified by a skyrmion-based random-number generator.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.174405\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.174405","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

自旋电子器件中,天电离态和非拓扑态之间的转变作为信息传输和存储的比特运算已被广泛探索,但这种转变的超快动力学仍难以观察和理解。在这里,我们利用自旋动力学模拟和谐波转变态理论(HTST)深入分析了氦磁体中天电离态的成核过程。我们揭示了这些拓扑态在天磁态和锥形态相界附近特定条件下的持续闪烁(创造-不熄灭)现象。通过最小能量路径分析,我们阐明了这种闪烁行为得益于手性晃子(CB)表面态的形成,而且由于它们的振荡模式不同,CB 的坍缩与薄膜中的天幕态不同。我们进一步利用 HTST 来估算作为外加磁场和温度函数的典型闪烁时间。最后,我们以基于天幕的随机数发生器为例,说明了天幕闪烁在受控概率计算中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skyrmion blinking from the conical phase
While the transition between skyrmionic and nontopological states has been widely explored as a bit operation for information transport and storage in spintronic devices, the ultrafast dynamics of such transitions remains challenging to observe and understand. Here, we utilize spin-dynamics simulations and harmonic transition state theory (HTST) to provide an in-depth analysis of the nucleation of skyrmionic states in helimagnets. We reveal a persistent blinking (creation-annihilation) phenomenon of these topological states under specific conditions near the phase boundary between skyrmion and conical states. Through a minimum-energy path analysis, we elucidate that this blinking behavior is favored by the formation of chiral bobber (CB) surface states and that the collapse of CBs differs from that of skyrmions in thin films due to their different oscillation modes. We further employ HTST to estimate the typical blinking time as a function of the applied magnetic field and temperature. Finally, we illustrate the practical use of skyrmion blinking for controlled probabilistic computing, exemplified by a skyrmion-based random-number generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Interconnected skyrmions in a nanowire structure: Micromagnetic simulations Spin-deformation coupling in two-dimensional polar materials Superconductivity and strain-enhanced phase stability of Janus tungsten chalcogenide hydride monolayers Two-dimensional higher-order topological metals Absorption of electromagnetic waves in a screened two-dimensional electron system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1