{"title":"从锥形阶段开始闪烁的 Skyrmion","authors":"Rai M. Menezes, Milorad V. Milošević","doi":"10.1103/physrevb.110.174405","DOIUrl":null,"url":null,"abstract":"While the transition between skyrmionic and nontopological states has been widely explored as a bit operation for information transport and storage in spintronic devices, the ultrafast dynamics of such transitions remains challenging to observe and understand. Here, we utilize spin-dynamics simulations and harmonic transition state theory (HTST) to provide an in-depth analysis of the nucleation of skyrmionic states in helimagnets. We reveal a persistent blinking (creation-annihilation) phenomenon of these topological states under specific conditions near the phase boundary between skyrmion and conical states. Through a minimum-energy path analysis, we elucidate that this blinking behavior is favored by the formation of chiral bobber (CB) surface states and that the collapse of CBs differs from that of skyrmions in thin films due to their different oscillation modes. We further employ HTST to estimate the typical blinking time as a function of the applied magnetic field and temperature. Finally, we illustrate the practical use of skyrmion blinking for controlled probabilistic computing, exemplified by a skyrmion-based random-number generator.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"34 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skyrmion blinking from the conical phase\",\"authors\":\"Rai M. Menezes, Milorad V. Milošević\",\"doi\":\"10.1103/physrevb.110.174405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the transition between skyrmionic and nontopological states has been widely explored as a bit operation for information transport and storage in spintronic devices, the ultrafast dynamics of such transitions remains challenging to observe and understand. Here, we utilize spin-dynamics simulations and harmonic transition state theory (HTST) to provide an in-depth analysis of the nucleation of skyrmionic states in helimagnets. We reveal a persistent blinking (creation-annihilation) phenomenon of these topological states under specific conditions near the phase boundary between skyrmion and conical states. Through a minimum-energy path analysis, we elucidate that this blinking behavior is favored by the formation of chiral bobber (CB) surface states and that the collapse of CBs differs from that of skyrmions in thin films due to their different oscillation modes. We further employ HTST to estimate the typical blinking time as a function of the applied magnetic field and temperature. Finally, we illustrate the practical use of skyrmion blinking for controlled probabilistic computing, exemplified by a skyrmion-based random-number generator.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.174405\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.174405","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
While the transition between skyrmionic and nontopological states has been widely explored as a bit operation for information transport and storage in spintronic devices, the ultrafast dynamics of such transitions remains challenging to observe and understand. Here, we utilize spin-dynamics simulations and harmonic transition state theory (HTST) to provide an in-depth analysis of the nucleation of skyrmionic states in helimagnets. We reveal a persistent blinking (creation-annihilation) phenomenon of these topological states under specific conditions near the phase boundary between skyrmion and conical states. Through a minimum-energy path analysis, we elucidate that this blinking behavior is favored by the formation of chiral bobber (CB) surface states and that the collapse of CBs differs from that of skyrmions in thin films due to their different oscillation modes. We further employ HTST to estimate the typical blinking time as a function of the applied magnetic field and temperature. Finally, we illustrate the practical use of skyrmion blinking for controlled probabilistic computing, exemplified by a skyrmion-based random-number generator.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter