Gillian L Garden, Ka Siu Fan, Megan Paterson, Fariba Shojaee-Moradie, Monique Borg Inguanez, Antonios Manoli, Victoria Edwards, Vivienne Lee, Brian M Frier, Ewan J Hutchison, Declan Maher, Chantal Mathieu, Stuart J Mitchell, Simon R Heller, Graham A Roberts, Kenneth M Shaw, Gerd Koehler, Julia K Mader, Bruce R King, David L Russell-Jones
{"title":"飞行过程中大气压力变化对胰岛素泵输送和胰岛素治疗糖尿病飞行员血糖控制的影响:体外模拟和回顾性实际观察研究。","authors":"Gillian L Garden, Ka Siu Fan, Megan Paterson, Fariba Shojaee-Moradie, Monique Borg Inguanez, Antonios Manoli, Victoria Edwards, Vivienne Lee, Brian M Frier, Ewan J Hutchison, Declan Maher, Chantal Mathieu, Stuart J Mitchell, Simon R Heller, Graham A Roberts, Kenneth M Shaw, Gerd Koehler, Julia K Mader, Bruce R King, David L Russell-Jones","doi":"10.1007/s00125-024-06295-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>Glycaemic control and clinical outcomes in diabetes are improved by continuous subcutaneous insulin infusion (CSII). Atmospheric pressure changes during flights may affect insulin delivery from pumps and cause unintended metabolic consequences, including hypoglycaemia, in people with type 1 diabetes. The present report evaluates both hypobaric flight simulation and real-world data in pilots using insulin pumps while flying.</p><p><strong>Methods: </strong>In the flight simulation part of this study, an in vitro study of insulin pumps was conducted in a hypobaric chamber, de-pressurised to 550 mmHg to mimic the atmospheric pressure changes in airliner cabins during commercial flights. Insulin delivery rates and bubble formation were recorded for standard flight protocol. Insulin infusion sets, without pumps, were tested in a simulated rapid decompression scenario. The real-world observational study was a 7.5-year retrospective cohort study in which pre- and in-flight self-monitored blood glucose (SMBG) values were monitored in pilots with insulin-treated diabetes. Commercial and private pilots granted a medical certificate to fly within the European Union Aviation Safety Agency approved protocol and receiving insulin either by pump or multiple daily injections (MDI) were included.</p><p><strong>Results: </strong>In the flight simulation study, full cartridges over-delivered 0.60 U of insulin during a 20 min ascent and under-delivered by 0.51 U during descent compared with ground-level performance. During emergency rapid decompression, 5.6 U of excess insulin was delivered. In the real-world study, seven pilots using CSII recorded 4656 SMBG values during 2345 h of flying across 1081 flights. Only 33 (0.7%) values were outside an acceptable safe range (5.0-15.0 mmol/l [90-270 mg/dl]). No clinically significant fall in the median SMBG concentration was observed after aircraft ascent and no in-flight SMBG values were within the hypoglycaemic range (<4.0 mmol/l [<72 mg/dl]). Compared with pilots receiving MDI therapy, pilots using CSII recorded more SMBG values within the acceptable range (99.3% vs 97.5%), fewer values in the low red range (0.02% vs 0.1%), fewer in-flight out-of-range values (0.2% vs 1.3%) and maintained stricter glycaemic control during flight.</p><p><strong>Conclusions/interpretation: </strong>Ambient pressure reduction during simulated flights results in bubble formation and expansion within insulin cartridges. This causes unintended delivery of small insulin doses independent of pre-determined delivery rates and represents the maximum amount of insulin that could be delivered and retracted. However, in vivo, pilots using CSII in-flight did not experience a fall in blood glucose or episodes of hypoglycaemia during these atmospheric pressure changes and the use of insulin pumps can be endorsed in view of their clinical benefits.</p>","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of atmospheric pressure change during flight on insulin pump delivery and glycaemic control of pilots with insulin-treated diabetes: an in vitro simulation and a retrospective observational real-world study.\",\"authors\":\"Gillian L Garden, Ka Siu Fan, Megan Paterson, Fariba Shojaee-Moradie, Monique Borg Inguanez, Antonios Manoli, Victoria Edwards, Vivienne Lee, Brian M Frier, Ewan J Hutchison, Declan Maher, Chantal Mathieu, Stuart J Mitchell, Simon R Heller, Graham A Roberts, Kenneth M Shaw, Gerd Koehler, Julia K Mader, Bruce R King, David L Russell-Jones\",\"doi\":\"10.1007/s00125-024-06295-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims/hypothesis: </strong>Glycaemic control and clinical outcomes in diabetes are improved by continuous subcutaneous insulin infusion (CSII). Atmospheric pressure changes during flights may affect insulin delivery from pumps and cause unintended metabolic consequences, including hypoglycaemia, in people with type 1 diabetes. The present report evaluates both hypobaric flight simulation and real-world data in pilots using insulin pumps while flying.</p><p><strong>Methods: </strong>In the flight simulation part of this study, an in vitro study of insulin pumps was conducted in a hypobaric chamber, de-pressurised to 550 mmHg to mimic the atmospheric pressure changes in airliner cabins during commercial flights. Insulin delivery rates and bubble formation were recorded for standard flight protocol. Insulin infusion sets, without pumps, were tested in a simulated rapid decompression scenario. The real-world observational study was a 7.5-year retrospective cohort study in which pre- and in-flight self-monitored blood glucose (SMBG) values were monitored in pilots with insulin-treated diabetes. Commercial and private pilots granted a medical certificate to fly within the European Union Aviation Safety Agency approved protocol and receiving insulin either by pump or multiple daily injections (MDI) were included.</p><p><strong>Results: </strong>In the flight simulation study, full cartridges over-delivered 0.60 U of insulin during a 20 min ascent and under-delivered by 0.51 U during descent compared with ground-level performance. During emergency rapid decompression, 5.6 U of excess insulin was delivered. In the real-world study, seven pilots using CSII recorded 4656 SMBG values during 2345 h of flying across 1081 flights. Only 33 (0.7%) values were outside an acceptable safe range (5.0-15.0 mmol/l [90-270 mg/dl]). No clinically significant fall in the median SMBG concentration was observed after aircraft ascent and no in-flight SMBG values were within the hypoglycaemic range (<4.0 mmol/l [<72 mg/dl]). Compared with pilots receiving MDI therapy, pilots using CSII recorded more SMBG values within the acceptable range (99.3% vs 97.5%), fewer values in the low red range (0.02% vs 0.1%), fewer in-flight out-of-range values (0.2% vs 1.3%) and maintained stricter glycaemic control during flight.</p><p><strong>Conclusions/interpretation: </strong>Ambient pressure reduction during simulated flights results in bubble formation and expansion within insulin cartridges. This causes unintended delivery of small insulin doses independent of pre-determined delivery rates and represents the maximum amount of insulin that could be delivered and retracted. However, in vivo, pilots using CSII in-flight did not experience a fall in blood glucose or episodes of hypoglycaemia during these atmospheric pressure changes and the use of insulin pumps can be endorsed in view of their clinical benefits.</p>\",\"PeriodicalId\":11164,\"journal\":{\"name\":\"Diabetologia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00125-024-06295-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-024-06295-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Effects of atmospheric pressure change during flight on insulin pump delivery and glycaemic control of pilots with insulin-treated diabetes: an in vitro simulation and a retrospective observational real-world study.
Aims/hypothesis: Glycaemic control and clinical outcomes in diabetes are improved by continuous subcutaneous insulin infusion (CSII). Atmospheric pressure changes during flights may affect insulin delivery from pumps and cause unintended metabolic consequences, including hypoglycaemia, in people with type 1 diabetes. The present report evaluates both hypobaric flight simulation and real-world data in pilots using insulin pumps while flying.
Methods: In the flight simulation part of this study, an in vitro study of insulin pumps was conducted in a hypobaric chamber, de-pressurised to 550 mmHg to mimic the atmospheric pressure changes in airliner cabins during commercial flights. Insulin delivery rates and bubble formation were recorded for standard flight protocol. Insulin infusion sets, without pumps, were tested in a simulated rapid decompression scenario. The real-world observational study was a 7.5-year retrospective cohort study in which pre- and in-flight self-monitored blood glucose (SMBG) values were monitored in pilots with insulin-treated diabetes. Commercial and private pilots granted a medical certificate to fly within the European Union Aviation Safety Agency approved protocol and receiving insulin either by pump or multiple daily injections (MDI) were included.
Results: In the flight simulation study, full cartridges over-delivered 0.60 U of insulin during a 20 min ascent and under-delivered by 0.51 U during descent compared with ground-level performance. During emergency rapid decompression, 5.6 U of excess insulin was delivered. In the real-world study, seven pilots using CSII recorded 4656 SMBG values during 2345 h of flying across 1081 flights. Only 33 (0.7%) values were outside an acceptable safe range (5.0-15.0 mmol/l [90-270 mg/dl]). No clinically significant fall in the median SMBG concentration was observed after aircraft ascent and no in-flight SMBG values were within the hypoglycaemic range (<4.0 mmol/l [<72 mg/dl]). Compared with pilots receiving MDI therapy, pilots using CSII recorded more SMBG values within the acceptable range (99.3% vs 97.5%), fewer values in the low red range (0.02% vs 0.1%), fewer in-flight out-of-range values (0.2% vs 1.3%) and maintained stricter glycaemic control during flight.
Conclusions/interpretation: Ambient pressure reduction during simulated flights results in bubble formation and expansion within insulin cartridges. This causes unintended delivery of small insulin doses independent of pre-determined delivery rates and represents the maximum amount of insulin that could be delivered and retracted. However, in vivo, pilots using CSII in-flight did not experience a fall in blood glucose or episodes of hypoglycaemia during these atmospheric pressure changes and the use of insulin pumps can be endorsed in view of their clinical benefits.
期刊介绍:
Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.