Chau Nguyen Minh Hoang, Khanh Duy Nguyen, Thuong Thi Ha Luong, Son Hai Nguyen, Mai Thi Tran
{"title":"单步水热法合成可用作纳米抗生素的氧化锌纳米棒,无需播种或碱基。","authors":"Chau Nguyen Minh Hoang, Khanh Duy Nguyen, Thuong Thi Ha Luong, Son Hai Nguyen, Mai Thi Tran","doi":"10.1371/journal.pone.0313224","DOIUrl":null,"url":null,"abstract":"<p><p>The alarming global rise in antibiotic resistance, driven by the widespread overuse of traditional antibiotics, has created an urgent demand for new antimicrobial solutions. This study presents zinc oxide (ZnO) nanorods as a potential nano-antibiotic agent. ZnO nanorods, with a 2:3 aspect ratio, were synthesized using an efficient one-step hydrothermal method at a low temperature of 100°C, reducing the synthesis time to just 5 hours. The synthesized ZnO nanorods' morphology, structure, and composition were characterized using scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy. The potent antimicrobial activity of these nanorods against common bacterial strains such as Escherichia coli, Bacillus subtilis, and Vibrio parahaemolyticus was examined through optical density at 600 nm (OD600) measurements and inhibition zone analysis, demonstrating substantial inhibition of bacterial growth. In particular, at a concentration of 5 mg/mL, ZnO nanorods achieved a 96% reduction of B. subtilis bacteria in OD600 and an impressive 99.87% reduction in culturing assays within one day, showcasing bactericidal efficiency on par with tetracycline at 0.003 mg/mL. Furthermore, a predictive model of bacterial growth was developed and validated, providing insights into the time-dependent bactericidal efficiency of the synthesized nanorods. These results highlight the potential of ZnO-based composites as a promising solution to combat antibiotic resistance, paving the way for next-generation antimicrobial materials.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-step hydrothermal synthesis of zinc oxide nanorods for potential use as nano-antibiotics without seeding or bases.\",\"authors\":\"Chau Nguyen Minh Hoang, Khanh Duy Nguyen, Thuong Thi Ha Luong, Son Hai Nguyen, Mai Thi Tran\",\"doi\":\"10.1371/journal.pone.0313224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The alarming global rise in antibiotic resistance, driven by the widespread overuse of traditional antibiotics, has created an urgent demand for new antimicrobial solutions. This study presents zinc oxide (ZnO) nanorods as a potential nano-antibiotic agent. ZnO nanorods, with a 2:3 aspect ratio, were synthesized using an efficient one-step hydrothermal method at a low temperature of 100°C, reducing the synthesis time to just 5 hours. The synthesized ZnO nanorods' morphology, structure, and composition were characterized using scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy. The potent antimicrobial activity of these nanorods against common bacterial strains such as Escherichia coli, Bacillus subtilis, and Vibrio parahaemolyticus was examined through optical density at 600 nm (OD600) measurements and inhibition zone analysis, demonstrating substantial inhibition of bacterial growth. In particular, at a concentration of 5 mg/mL, ZnO nanorods achieved a 96% reduction of B. subtilis bacteria in OD600 and an impressive 99.87% reduction in culturing assays within one day, showcasing bactericidal efficiency on par with tetracycline at 0.003 mg/mL. Furthermore, a predictive model of bacterial growth was developed and validated, providing insights into the time-dependent bactericidal efficiency of the synthesized nanorods. These results highlight the potential of ZnO-based composites as a promising solution to combat antibiotic resistance, paving the way for next-generation antimicrobial materials.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0313224\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0313224","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Single-step hydrothermal synthesis of zinc oxide nanorods for potential use as nano-antibiotics without seeding or bases.
The alarming global rise in antibiotic resistance, driven by the widespread overuse of traditional antibiotics, has created an urgent demand for new antimicrobial solutions. This study presents zinc oxide (ZnO) nanorods as a potential nano-antibiotic agent. ZnO nanorods, with a 2:3 aspect ratio, were synthesized using an efficient one-step hydrothermal method at a low temperature of 100°C, reducing the synthesis time to just 5 hours. The synthesized ZnO nanorods' morphology, structure, and composition were characterized using scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy. The potent antimicrobial activity of these nanorods against common bacterial strains such as Escherichia coli, Bacillus subtilis, and Vibrio parahaemolyticus was examined through optical density at 600 nm (OD600) measurements and inhibition zone analysis, demonstrating substantial inhibition of bacterial growth. In particular, at a concentration of 5 mg/mL, ZnO nanorods achieved a 96% reduction of B. subtilis bacteria in OD600 and an impressive 99.87% reduction in culturing assays within one day, showcasing bactericidal efficiency on par with tetracycline at 0.003 mg/mL. Furthermore, a predictive model of bacterial growth was developed and validated, providing insights into the time-dependent bactericidal efficiency of the synthesized nanorods. These results highlight the potential of ZnO-based composites as a promising solution to combat antibiotic resistance, paving the way for next-generation antimicrobial materials.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage