Kevin R Nash, Umesh K Jinwal, Krishna Moorthi Bhat
{"title":"UBE3A:弥合神经发育、神经功能和神经退行性疾病之间的鸿沟","authors":"Kevin R Nash, Umesh K Jinwal, Krishna Moorthi Bhat","doi":"10.1177/13872877241283680","DOIUrl":null,"url":null,"abstract":"<p><p>Post-translational modifications (PTMs) of proteins play a significant role in normal protein function but can also be instrumental in disease pathogenesis. One critical yet under-studied PTM in disease is ubiquitination. Ubiquitin chain addition and substrate specificity are determined by a large spectrum of ubiquitin-ligating and -modifying enzymes, E3 ligases, whose expression levels and activities are tightly regulated in a cell-specific manner. While most ubiquitin chains can target proteins for proteasomal degradation, ubiquitination can contribute to other functions within the cell, including protein localization, protein activity, endocytosis, transcription, and autophagy. One E3 ligase, UBE3A, has garnered much attention because of its involvement in learning and memory, as well as its association with neurodevelopmental autism spectrum disorders (ASDs). However, more recent findings have suggested a potential involvement of UBE3A in neurodegenerative proteinopathies, where reduced UBE3A levels can lead to an enhanced rate of aggregate formation and cell death. Here, we review the literature on UBE3A in neurodevelopment, function, and neurodegenerative diseases and demonstrate that UBE3A could play a critical role in disease progression and cognitive function.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UBE3A: Bridging the gap between neurodevelopment, neural function, and neurodegenerative woes.\",\"authors\":\"Kevin R Nash, Umesh K Jinwal, Krishna Moorthi Bhat\",\"doi\":\"10.1177/13872877241283680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Post-translational modifications (PTMs) of proteins play a significant role in normal protein function but can also be instrumental in disease pathogenesis. One critical yet under-studied PTM in disease is ubiquitination. Ubiquitin chain addition and substrate specificity are determined by a large spectrum of ubiquitin-ligating and -modifying enzymes, E3 ligases, whose expression levels and activities are tightly regulated in a cell-specific manner. While most ubiquitin chains can target proteins for proteasomal degradation, ubiquitination can contribute to other functions within the cell, including protein localization, protein activity, endocytosis, transcription, and autophagy. One E3 ligase, UBE3A, has garnered much attention because of its involvement in learning and memory, as well as its association with neurodevelopmental autism spectrum disorders (ASDs). However, more recent findings have suggested a potential involvement of UBE3A in neurodegenerative proteinopathies, where reduced UBE3A levels can lead to an enhanced rate of aggregate formation and cell death. Here, we review the literature on UBE3A in neurodevelopment, function, and neurodegenerative diseases and demonstrate that UBE3A could play a critical role in disease progression and cognitive function.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877241283680\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877241283680","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
UBE3A: Bridging the gap between neurodevelopment, neural function, and neurodegenerative woes.
Post-translational modifications (PTMs) of proteins play a significant role in normal protein function but can also be instrumental in disease pathogenesis. One critical yet under-studied PTM in disease is ubiquitination. Ubiquitin chain addition and substrate specificity are determined by a large spectrum of ubiquitin-ligating and -modifying enzymes, E3 ligases, whose expression levels and activities are tightly regulated in a cell-specific manner. While most ubiquitin chains can target proteins for proteasomal degradation, ubiquitination can contribute to other functions within the cell, including protein localization, protein activity, endocytosis, transcription, and autophagy. One E3 ligase, UBE3A, has garnered much attention because of its involvement in learning and memory, as well as its association with neurodevelopmental autism spectrum disorders (ASDs). However, more recent findings have suggested a potential involvement of UBE3A in neurodegenerative proteinopathies, where reduced UBE3A levels can lead to an enhanced rate of aggregate formation and cell death. Here, we review the literature on UBE3A in neurodevelopment, function, and neurodegenerative diseases and demonstrate that UBE3A could play a critical role in disease progression and cognitive function.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.