Dinghong Mu, Jian Wang, Fenglei Li, Wujin Hu, Rong Chen
{"title":"基于 sEMG 和 ACC 信号融合的运动疲劳识别多级注意机制。","authors":"Dinghong Mu, Jian Wang, Fenglei Li, Wujin Hu, Rong Chen","doi":"10.1371/journal.pone.0310035","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop a cost-effective and reliable motion monitoring device capable of comprehensive fatigue analysis. It achieves this objective by integrating surface electromyography (sEMG) and accelerometer (ACC) signals through a feature fusion strategy. The study introduces a multi-level attention mechanism for classification, leveraging convolutional neural networks (CNNs). The preprocessing phase involves a local feature attention mechanism that enhances local waveform features using the amplitude envelope. A dual-scale attention mechanism, operating at both channel and neuron levels, is employed to enhance the model's learning from high-dimensional fused data, improving feature extraction and generalization. The local feature attention mechanism significantly improves the model's classification accuracy and convergence, as demonstrated in ablation experiments. The model, optimized with multi-level attention mechanisms, excels in accuracy and generalization, particularly in handling data with pseudo-artifacts. Computational analysis indicates that the proposed optimization algorithm has minimal impact on CNN's training and testing times. The study achieves recognition accuracies of 92.52%, 92.38%, and 92.30%, as well as F1-scores of 91.92%, 92.13%, and 92.29% for the three fatigue states, affirming its reliability. This research provides technical support for the development of affordable and dependable wearable motion monitoring devices.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multilevel attention mechanism for motion fatigue recognition based on sEMG and ACC signal fusion.\",\"authors\":\"Dinghong Mu, Jian Wang, Fenglei Li, Wujin Hu, Rong Chen\",\"doi\":\"10.1371/journal.pone.0310035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to develop a cost-effective and reliable motion monitoring device capable of comprehensive fatigue analysis. It achieves this objective by integrating surface electromyography (sEMG) and accelerometer (ACC) signals through a feature fusion strategy. The study introduces a multi-level attention mechanism for classification, leveraging convolutional neural networks (CNNs). The preprocessing phase involves a local feature attention mechanism that enhances local waveform features using the amplitude envelope. A dual-scale attention mechanism, operating at both channel and neuron levels, is employed to enhance the model's learning from high-dimensional fused data, improving feature extraction and generalization. The local feature attention mechanism significantly improves the model's classification accuracy and convergence, as demonstrated in ablation experiments. The model, optimized with multi-level attention mechanisms, excels in accuracy and generalization, particularly in handling data with pseudo-artifacts. Computational analysis indicates that the proposed optimization algorithm has minimal impact on CNN's training and testing times. The study achieves recognition accuracies of 92.52%, 92.38%, and 92.30%, as well as F1-scores of 91.92%, 92.13%, and 92.29% for the three fatigue states, affirming its reliability. This research provides technical support for the development of affordable and dependable wearable motion monitoring devices.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0310035\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0310035","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Multilevel attention mechanism for motion fatigue recognition based on sEMG and ACC signal fusion.
This study aims to develop a cost-effective and reliable motion monitoring device capable of comprehensive fatigue analysis. It achieves this objective by integrating surface electromyography (sEMG) and accelerometer (ACC) signals through a feature fusion strategy. The study introduces a multi-level attention mechanism for classification, leveraging convolutional neural networks (CNNs). The preprocessing phase involves a local feature attention mechanism that enhances local waveform features using the amplitude envelope. A dual-scale attention mechanism, operating at both channel and neuron levels, is employed to enhance the model's learning from high-dimensional fused data, improving feature extraction and generalization. The local feature attention mechanism significantly improves the model's classification accuracy and convergence, as demonstrated in ablation experiments. The model, optimized with multi-level attention mechanisms, excels in accuracy and generalization, particularly in handling data with pseudo-artifacts. Computational analysis indicates that the proposed optimization algorithm has minimal impact on CNN's training and testing times. The study achieves recognition accuracies of 92.52%, 92.38%, and 92.30%, as well as F1-scores of 91.92%, 92.13%, and 92.29% for the three fatigue states, affirming its reliability. This research provides technical support for the development of affordable and dependable wearable motion monitoring devices.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage