多轴压缩下高取向 Ti3SiC2 的动态强度和碎裂情况

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of The European Ceramic Society Pub Date : 2024-10-22 DOI:10.1016/j.jeurceramsoc.2024.116994
Xingyuan Zhao , Maxim Sokol , Michel W. Barsoum , Leslie Lamberson
{"title":"多轴压缩下高取向 Ti3SiC2 的动态强度和碎裂情况","authors":"Xingyuan Zhao ,&nbsp;Maxim Sokol ,&nbsp;Michel W. Barsoum ,&nbsp;Leslie Lamberson","doi":"10.1016/j.jeurceramsoc.2024.116994","DOIUrl":null,"url":null,"abstract":"<div><div>MAX phases are distinguished by their unique kink band formation, a distinct deformation mechanism in layered materials. This study explores the influence of global grain orientation c-axis, strain rate, and stress state on the compressive response of highly oriented Ti<sub>3</sub>SiC<sub>2</sub> through experimental methods. A Kolsky (or split-Hopkinson) bar is employed to evaluate the dynamic compressive response under uniaxial and biaxial (planar confinement) conditions under 10<sup>2</sup> s<sup>−1</sup> strain rate. Macroscopic ultra-high-speed visualization during loading and microscopic post-mortem fractography reveal that confinement states significantly impact both macroscopic failure patterns and microscopic fracture mechanisms. Notably, biaxial loading with dynamic load edge-on to the grains and 80 MPa planar confinement along the layers resulted in the highest dynamic compressive strength observed (1636 ± 136 MPa), a 66 % increase compared to the unconfined uniaxial dynamic condition. The planar confinement appears to delay crack propagation and enhance inelastic deformation.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 116994"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic strength and fragmentation of highly oriented Ti3SiC2 under multiaxial compression\",\"authors\":\"Xingyuan Zhao ,&nbsp;Maxim Sokol ,&nbsp;Michel W. Barsoum ,&nbsp;Leslie Lamberson\",\"doi\":\"10.1016/j.jeurceramsoc.2024.116994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MAX phases are distinguished by their unique kink band formation, a distinct deformation mechanism in layered materials. This study explores the influence of global grain orientation c-axis, strain rate, and stress state on the compressive response of highly oriented Ti<sub>3</sub>SiC<sub>2</sub> through experimental methods. A Kolsky (or split-Hopkinson) bar is employed to evaluate the dynamic compressive response under uniaxial and biaxial (planar confinement) conditions under 10<sup>2</sup> s<sup>−1</sup> strain rate. Macroscopic ultra-high-speed visualization during loading and microscopic post-mortem fractography reveal that confinement states significantly impact both macroscopic failure patterns and microscopic fracture mechanisms. Notably, biaxial loading with dynamic load edge-on to the grains and 80 MPa planar confinement along the layers resulted in the highest dynamic compressive strength observed (1636 ± 136 MPa), a 66 % increase compared to the unconfined uniaxial dynamic condition. The planar confinement appears to delay crack propagation and enhance inelastic deformation.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"45 3\",\"pages\":\"Article 116994\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221924008677\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008677","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

MAX 相因其独特的扭结带形成而与众不同,这是层状材料中一种独特的变形机制。本研究通过实验方法探讨了全局晶粒取向 c 轴、应变速率和应力状态对高取向 Ti3SiC2 压缩响应的影响。在 102 s-1 应变速率下,采用 Kolsky(或 split-Hopkinson)棒评估单轴和双轴(平面约束)条件下的动态压缩响应。加载过程中的宏观超高速可视化和死后的微观断裂图显示,约束状态对宏观破坏模式和微观断裂机制都有显著影响。值得注意的是,在晶粒边缘施加动态载荷和沿层施加 80 兆帕平面约束的双轴加载条件下,观察到的动态抗压强度最高(1636 ± 136 兆帕),与非约束单轴动态条件相比提高了 66%。平面约束似乎能延缓裂纹扩展并增强非弹性变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic strength and fragmentation of highly oriented Ti3SiC2 under multiaxial compression
MAX phases are distinguished by their unique kink band formation, a distinct deformation mechanism in layered materials. This study explores the influence of global grain orientation c-axis, strain rate, and stress state on the compressive response of highly oriented Ti3SiC2 through experimental methods. A Kolsky (or split-Hopkinson) bar is employed to evaluate the dynamic compressive response under uniaxial and biaxial (planar confinement) conditions under 102 s−1 strain rate. Macroscopic ultra-high-speed visualization during loading and microscopic post-mortem fractography reveal that confinement states significantly impact both macroscopic failure patterns and microscopic fracture mechanisms. Notably, biaxial loading with dynamic load edge-on to the grains and 80 MPa planar confinement along the layers resulted in the highest dynamic compressive strength observed (1636 ± 136 MPa), a 66 % increase compared to the unconfined uniaxial dynamic condition. The planar confinement appears to delay crack propagation and enhance inelastic deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
期刊最新文献
Amorphous SiOC-coated submicron mullite aerogels with excellent thermal and structural stability up to 1500 ℃ Oxidation behavior of (Hf0.2Zr0.2Ta0.2Ti0.2Me0.2)B2 (Me=Nb,Cr) high-entropy ceramics at 1200 °C in air Properties of multiple rare earth oxides co-stabilized YDyGdSmNd-TZP ceramics HfB2-SiC ceramics fabricated by reactive melt infiltration and its long-term oxidation behavior at 1650°C Optimized electrostrain with minimal hysteresis at the MPB in BNT-based ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1