{"title":"颚肌纤维结构和头骨形态有利于雄性腕足动物形成相对较宽的颚间隙","authors":"","doi":"10.1016/j.jhevol.2024.103601","DOIUrl":null,"url":null,"abstract":"<div><div>In primates and other mammals, the capacity to generate a wide maximum jaw gape is an important performance variable related to both feeding and nonfeeding oral behaviors, such as canine gape display and clearing the canines for use as weapons during aggressive encounters. Across sexually dimorphic catarrhine primates, gape is significantly correlated with canine height and with musculoskeletal features that facilitate wide gapes. Given the importance of canine gape behaviors in males as part of intrasexual competition for females, functional relationships between gape, canine height, and musculoskeletal morphology can be predicted to differ between the sexes. We test this hypothesis by investigating sex-specific relationships among these variables in a maximum sample of 32 cercopithecoid species. Using phylogenetic least squares regression, we found that of 18 predicted relationships, 16 of the 18 (89%) were significant in males, whereas only six (33%) were significant in females. Moreover, 15 of the 18 correlations were higher—10 of the 18 significantly higher—in males than in females. Males, but not females, showed strong and significant positive allometry of fiber lengths, indicating that increase in male jaw length is accompanied by allometric increases in the capacity for muscle stretch. While males and females showed significant negative allometry for muscle leverage, only males showed significant negative allometry of muscle leverage relative to jaw gape and canine height. Collectively, these results provide support for the hypothesis that as selection acted to increase relative canine height in male cercopithecoids, one change was an allometric increase in relative maximum jaw gape, along with allometric increases in musculoskeletal morphologies that facilitate gape. Lastly, if gape and canine display/clearance are key targets of selection on masticatory morphology in male cercopithecoids, then cercopithecoid monkeys such as macaques, baboons, and sooty mangabeys may have diminished utility as models for drawing paleobiological inferences from musculoskeletal morphology about feeding behavior and diet in fossil hominins.</div></div>","PeriodicalId":54805,"journal":{"name":"Journal of Human Evolution","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jaw-muscle fiber architecture and skull form facilitate relatively wide jaw gapes in male cercopithecoid monkeys\",\"authors\":\"\",\"doi\":\"10.1016/j.jhevol.2024.103601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In primates and other mammals, the capacity to generate a wide maximum jaw gape is an important performance variable related to both feeding and nonfeeding oral behaviors, such as canine gape display and clearing the canines for use as weapons during aggressive encounters. Across sexually dimorphic catarrhine primates, gape is significantly correlated with canine height and with musculoskeletal features that facilitate wide gapes. Given the importance of canine gape behaviors in males as part of intrasexual competition for females, functional relationships between gape, canine height, and musculoskeletal morphology can be predicted to differ between the sexes. We test this hypothesis by investigating sex-specific relationships among these variables in a maximum sample of 32 cercopithecoid species. Using phylogenetic least squares regression, we found that of 18 predicted relationships, 16 of the 18 (89%) were significant in males, whereas only six (33%) were significant in females. Moreover, 15 of the 18 correlations were higher—10 of the 18 significantly higher—in males than in females. Males, but not females, showed strong and significant positive allometry of fiber lengths, indicating that increase in male jaw length is accompanied by allometric increases in the capacity for muscle stretch. While males and females showed significant negative allometry for muscle leverage, only males showed significant negative allometry of muscle leverage relative to jaw gape and canine height. Collectively, these results provide support for the hypothesis that as selection acted to increase relative canine height in male cercopithecoids, one change was an allometric increase in relative maximum jaw gape, along with allometric increases in musculoskeletal morphologies that facilitate gape. Lastly, if gape and canine display/clearance are key targets of selection on masticatory morphology in male cercopithecoids, then cercopithecoid monkeys such as macaques, baboons, and sooty mangabeys may have diminished utility as models for drawing paleobiological inferences from musculoskeletal morphology about feeding behavior and diet in fossil hominins.</div></div>\",\"PeriodicalId\":54805,\"journal\":{\"name\":\"Journal of Human Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Evolution\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004724842400109X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Evolution","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004724842400109X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
Jaw-muscle fiber architecture and skull form facilitate relatively wide jaw gapes in male cercopithecoid monkeys
In primates and other mammals, the capacity to generate a wide maximum jaw gape is an important performance variable related to both feeding and nonfeeding oral behaviors, such as canine gape display and clearing the canines for use as weapons during aggressive encounters. Across sexually dimorphic catarrhine primates, gape is significantly correlated with canine height and with musculoskeletal features that facilitate wide gapes. Given the importance of canine gape behaviors in males as part of intrasexual competition for females, functional relationships between gape, canine height, and musculoskeletal morphology can be predicted to differ between the sexes. We test this hypothesis by investigating sex-specific relationships among these variables in a maximum sample of 32 cercopithecoid species. Using phylogenetic least squares regression, we found that of 18 predicted relationships, 16 of the 18 (89%) were significant in males, whereas only six (33%) were significant in females. Moreover, 15 of the 18 correlations were higher—10 of the 18 significantly higher—in males than in females. Males, but not females, showed strong and significant positive allometry of fiber lengths, indicating that increase in male jaw length is accompanied by allometric increases in the capacity for muscle stretch. While males and females showed significant negative allometry for muscle leverage, only males showed significant negative allometry of muscle leverage relative to jaw gape and canine height. Collectively, these results provide support for the hypothesis that as selection acted to increase relative canine height in male cercopithecoids, one change was an allometric increase in relative maximum jaw gape, along with allometric increases in musculoskeletal morphologies that facilitate gape. Lastly, if gape and canine display/clearance are key targets of selection on masticatory morphology in male cercopithecoids, then cercopithecoid monkeys such as macaques, baboons, and sooty mangabeys may have diminished utility as models for drawing paleobiological inferences from musculoskeletal morphology about feeding behavior and diet in fossil hominins.
期刊介绍:
The Journal of Human Evolution concentrates on publishing the highest quality papers covering all aspects of human evolution. The central focus is aimed jointly at paleoanthropological work, covering human and primate fossils, and at comparative studies of living species, including both morphological and molecular evidence. These include descriptions of new discoveries, interpretative analyses of new and previously described material, and assessments of the phylogeny and paleobiology of primate species. Submissions should address issues and questions of broad interest in paleoanthropology.