{"title":"加速计算:多元概率模型的成对拟合技术","authors":"Margaux Delporte , Geert Verbeke , Steffen Fieuws , Geert Molenberghs","doi":"10.1016/j.csda.2024.108082","DOIUrl":null,"url":null,"abstract":"<div><div>Fitting multivariate probit models via maximum likelihood presents considerable computational challenges, particularly in terms of computation time and convergence difficulties, even for small numbers of responses. These issues are exacerbated when dealing with ordinal data. An efficient computational approach is introduced, based on a pairwise fitting technique within a pseudo-likelihood framework. This methodology is applied to clinical case studies, specifically using a trivariate probit model. Additionally, the correlation structure among outcomes is allowed to depend on covariates, enhancing both the flexibility and interpretability of the model. By way of simulation and real data applications, the proposed approach demonstrates superior computational efficiency as the dimension of the outcome vector increases. The method's ability to capture covariate-dependent correlations makes it particularly useful in medical research, where understanding complex associations among health outcomes is of scientific importance.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating computation: A pairwise fitting technique for multivariate probit models\",\"authors\":\"Margaux Delporte , Geert Verbeke , Steffen Fieuws , Geert Molenberghs\",\"doi\":\"10.1016/j.csda.2024.108082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fitting multivariate probit models via maximum likelihood presents considerable computational challenges, particularly in terms of computation time and convergence difficulties, even for small numbers of responses. These issues are exacerbated when dealing with ordinal data. An efficient computational approach is introduced, based on a pairwise fitting technique within a pseudo-likelihood framework. This methodology is applied to clinical case studies, specifically using a trivariate probit model. Additionally, the correlation structure among outcomes is allowed to depend on covariates, enhancing both the flexibility and interpretability of the model. By way of simulation and real data applications, the proposed approach demonstrates superior computational efficiency as the dimension of the outcome vector increases. The method's ability to capture covariate-dependent correlations makes it particularly useful in medical research, where understanding complex associations among health outcomes is of scientific importance.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016794732400166X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732400166X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerating computation: A pairwise fitting technique for multivariate probit models
Fitting multivariate probit models via maximum likelihood presents considerable computational challenges, particularly in terms of computation time and convergence difficulties, even for small numbers of responses. These issues are exacerbated when dealing with ordinal data. An efficient computational approach is introduced, based on a pairwise fitting technique within a pseudo-likelihood framework. This methodology is applied to clinical case studies, specifically using a trivariate probit model. Additionally, the correlation structure among outcomes is allowed to depend on covariates, enhancing both the flexibility and interpretability of the model. By way of simulation and real data applications, the proposed approach demonstrates superior computational efficiency as the dimension of the outcome vector increases. The method's ability to capture covariate-dependent correlations makes it particularly useful in medical research, where understanding complex associations among health outcomes is of scientific importance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.