Zonglun Cao , Hailong Li , Yiyang Zhang , Yue Lian , Huaihao Zhang
{"title":"氧诱导界面修饰的二维碳纳米片的超级电容行为","authors":"Zonglun Cao , Hailong Li , Yiyang Zhang , Yue Lian , Huaihao Zhang","doi":"10.1016/j.desal.2024.118261","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass-derived carbon typically contains abundant heteroatomic defects and interfacial functional groups, which can contribute to additional pseudocapacitance. However, the type of interfacial functional groups in biomass-derived carbon is uncontrollable and variable, reducing their homogeneity. In this work, recyclable boric acid was employed as an activator to convert bioaerogels into carbon nanosheets. Subsequently, low-temperature air oxidation was utilized to modulate their thickness and microstructure. Notably, the multiple and uncontrollable functional groups at the carbon interface were uniformly transformed into oxygen-containing functional groups under oxygen induction, resulting in 2D carbon nanosheet materials with enhanced stability properties. Meanwhile, the introduction of more oxygen-containing functional groups, such as carbonyl (C=O) and carboxyl (-COOH) groups, improves material wettability and capacitive properties. In addition, the boron and nitrogen elements doping introduced by activators and precursors enhances its pseudocapacitive properties and electrical conductivity from the carbon lattice perspective. Moreover, the rich electron/deficient effect of B<img>N valence bond can effectively boost their conductivity and rate performance. In fact, the materials present good capacitive properties (high specific capacitance of 298.5 F g<sup>−1</sup> in KOH three-electrode system) and CDI (capacitive deionization) performance (good desalting capacity of 35.2 mg g<sup>−1</sup> in CDI system).</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118261"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercapacitive behavior of two-dimensional carbon nanosheets with oxygen-induced interfacial modification\",\"authors\":\"Zonglun Cao , Hailong Li , Yiyang Zhang , Yue Lian , Huaihao Zhang\",\"doi\":\"10.1016/j.desal.2024.118261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomass-derived carbon typically contains abundant heteroatomic defects and interfacial functional groups, which can contribute to additional pseudocapacitance. However, the type of interfacial functional groups in biomass-derived carbon is uncontrollable and variable, reducing their homogeneity. In this work, recyclable boric acid was employed as an activator to convert bioaerogels into carbon nanosheets. Subsequently, low-temperature air oxidation was utilized to modulate their thickness and microstructure. Notably, the multiple and uncontrollable functional groups at the carbon interface were uniformly transformed into oxygen-containing functional groups under oxygen induction, resulting in 2D carbon nanosheet materials with enhanced stability properties. Meanwhile, the introduction of more oxygen-containing functional groups, such as carbonyl (C=O) and carboxyl (-COOH) groups, improves material wettability and capacitive properties. In addition, the boron and nitrogen elements doping introduced by activators and precursors enhances its pseudocapacitive properties and electrical conductivity from the carbon lattice perspective. Moreover, the rich electron/deficient effect of B<img>N valence bond can effectively boost their conductivity and rate performance. In fact, the materials present good capacitive properties (high specific capacitance of 298.5 F g<sup>−1</sup> in KOH three-electrode system) and CDI (capacitive deionization) performance (good desalting capacity of 35.2 mg g<sup>−1</sup> in CDI system).</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"593 \",\"pages\":\"Article 118261\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001191642400972X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001191642400972X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Supercapacitive behavior of two-dimensional carbon nanosheets with oxygen-induced interfacial modification
Biomass-derived carbon typically contains abundant heteroatomic defects and interfacial functional groups, which can contribute to additional pseudocapacitance. However, the type of interfacial functional groups in biomass-derived carbon is uncontrollable and variable, reducing their homogeneity. In this work, recyclable boric acid was employed as an activator to convert bioaerogels into carbon nanosheets. Subsequently, low-temperature air oxidation was utilized to modulate their thickness and microstructure. Notably, the multiple and uncontrollable functional groups at the carbon interface were uniformly transformed into oxygen-containing functional groups under oxygen induction, resulting in 2D carbon nanosheet materials with enhanced stability properties. Meanwhile, the introduction of more oxygen-containing functional groups, such as carbonyl (C=O) and carboxyl (-COOH) groups, improves material wettability and capacitive properties. In addition, the boron and nitrogen elements doping introduced by activators and precursors enhances its pseudocapacitive properties and electrical conductivity from the carbon lattice perspective. Moreover, the rich electron/deficient effect of BN valence bond can effectively boost their conductivity and rate performance. In fact, the materials present good capacitive properties (high specific capacitance of 298.5 F g−1 in KOH three-electrode system) and CDI (capacitive deionization) performance (good desalting capacity of 35.2 mg g−1 in CDI system).
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.