Liping Chen , Chuang Liu , António M. Lopes , Yong Lin , Yingxiao Liu , YangQuan Chen
{"title":"具有增益波动的可变分数阶单边 Lipschitz 混沌系统的 LMI 同步条件","authors":"Liping Chen , Chuang Liu , António M. Lopes , Yong Lin , Yingxiao Liu , YangQuan Chen","doi":"10.1016/j.chaos.2024.115695","DOIUrl":null,"url":null,"abstract":"<div><div>This article addresses the synchronization of general variable fractional-order one-sided Lipschitz chaotic systems with norm-bounded time-varying parametric uncertainty. A non-fragile state feedback control scheme is designed to cope with uncertainties in the controller gain fluctuations, and a sufficient condition for master/slave synchronization and determination of the controller gain is derived and expressed as a linear matrix inequality. The new control approach is applicable to fractional-order Lipschitz chaotic systems as well as to integer-order systems. Additionally, compared with other existing schemes, the method is easier and less costly to implement in real-world applications. Three numerical examples are given to show the performance of the non-fragile control approach for synchronizing practical chaotic systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115695"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LMI synchronization conditions for variable fractional-order one-sided Lipschitz chaotic systems with gain fluctuations\",\"authors\":\"Liping Chen , Chuang Liu , António M. Lopes , Yong Lin , Yingxiao Liu , YangQuan Chen\",\"doi\":\"10.1016/j.chaos.2024.115695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article addresses the synchronization of general variable fractional-order one-sided Lipschitz chaotic systems with norm-bounded time-varying parametric uncertainty. A non-fragile state feedback control scheme is designed to cope with uncertainties in the controller gain fluctuations, and a sufficient condition for master/slave synchronization and determination of the controller gain is derived and expressed as a linear matrix inequality. The new control approach is applicable to fractional-order Lipschitz chaotic systems as well as to integer-order systems. Additionally, compared with other existing schemes, the method is easier and less costly to implement in real-world applications. Three numerical examples are given to show the performance of the non-fragile control approach for synchronizing practical chaotic systems.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"189 \",\"pages\":\"Article 115695\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012475\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012475","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
LMI synchronization conditions for variable fractional-order one-sided Lipschitz chaotic systems with gain fluctuations
This article addresses the synchronization of general variable fractional-order one-sided Lipschitz chaotic systems with norm-bounded time-varying parametric uncertainty. A non-fragile state feedback control scheme is designed to cope with uncertainties in the controller gain fluctuations, and a sufficient condition for master/slave synchronization and determination of the controller gain is derived and expressed as a linear matrix inequality. The new control approach is applicable to fractional-order Lipschitz chaotic systems as well as to integer-order systems. Additionally, compared with other existing schemes, the method is easier and less costly to implement in real-world applications. Three numerical examples are given to show the performance of the non-fragile control approach for synchronizing practical chaotic systems.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.