Meixia Shan , Chaoqun Niu , Decheng Liu , Dongyang Li , Xueling Wang , Junyong Zhu , Qun Xu , Jorge Gascon , Yatao Zhang
{"title":"具有结晶-非结晶异质界面的分子焊接 COF 膜,用于快速有机溶剂纳滤","authors":"Meixia Shan , Chaoqun Niu , Decheng Liu , Dongyang Li , Xueling Wang , Junyong Zhu , Qun Xu , Jorge Gascon , Yatao Zhang","doi":"10.1016/j.advmem.2024.100110","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) featuring high porosity and well-defined pore structures are attractive candidates for organic solvent nanofiltration (OSN). However, preparing defect-free COF membrane and manipulating pore size for precise molecular separation in OSN remains a significant challenge. Herein, we address this challenge by developing composite membranes through molecular soldering a benzimidazole-linked polymer (BILP-101x) onto a continuous ACOF-1 membrane. The shared monomer of ACOF-1 and BILP-101x promotes good compatibility, allowing the amorphous BILP-101x chemically stitch the grain boundary defects of the crystalline ACOF-1 layer and create narrow, staggered pores at the interface, thereby enhancing the OSN performance. Non-equilibrium molecular dynamics simulations were employed to reproduce and explain the permeability order of the solvents and dyes, revealing a hydrogen-bond cluster permeation mode for alcohols. Furthermore, the optimized BILP-101x/ACOF-1 composite membrane exhibits excellent ethanol permeance (13.2 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) and outstanding rejection towards various dye molecules, together with desirable and stable OSN performance under continuous filtration operation. This work opens a new avenue for improving the separation performance of continuous COF membranes in OSN applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular soldered COF membrane with crystalline-amorphous heterointerface for fast organic solvent nanofiltration\",\"authors\":\"Meixia Shan , Chaoqun Niu , Decheng Liu , Dongyang Li , Xueling Wang , Junyong Zhu , Qun Xu , Jorge Gascon , Yatao Zhang\",\"doi\":\"10.1016/j.advmem.2024.100110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Covalent organic frameworks (COFs) featuring high porosity and well-defined pore structures are attractive candidates for organic solvent nanofiltration (OSN). However, preparing defect-free COF membrane and manipulating pore size for precise molecular separation in OSN remains a significant challenge. Herein, we address this challenge by developing composite membranes through molecular soldering a benzimidazole-linked polymer (BILP-101x) onto a continuous ACOF-1 membrane. The shared monomer of ACOF-1 and BILP-101x promotes good compatibility, allowing the amorphous BILP-101x chemically stitch the grain boundary defects of the crystalline ACOF-1 layer and create narrow, staggered pores at the interface, thereby enhancing the OSN performance. Non-equilibrium molecular dynamics simulations were employed to reproduce and explain the permeability order of the solvents and dyes, revealing a hydrogen-bond cluster permeation mode for alcohols. Furthermore, the optimized BILP-101x/ACOF-1 composite membrane exhibits excellent ethanol permeance (13.2 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) and outstanding rejection towards various dye molecules, together with desirable and stable OSN performance under continuous filtration operation. This work opens a new avenue for improving the separation performance of continuous COF membranes in OSN applications.</div></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"4 \",\"pages\":\"Article 100110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823424000216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823424000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
具有高孔隙率和明确孔隙结构的共价有机框架(COF)是有机溶剂纳滤(OSN)的理想候选材料。然而,在 OSN 中制备无缺陷 COF 膜并控制孔径以实现精确的分子分离仍然是一项重大挑战。在此,我们通过将苯并咪唑连接聚合物(BILP-101x)分子焊接到连续 ACOF-1 膜上来开发复合膜,从而解决了这一难题。ACOF-1 和 BILP-101x 的共用单体促进了良好的兼容性,使无定形的 BILP-101x 能够化学缝合结晶 ACOF-1 层的晶界缺陷,并在界面上形成狭窄、交错的孔隙,从而提高 OSN 的性能。非平衡分子动力学模拟再现并解释了溶剂和染料的渗透顺序,揭示了醇类的氢键簇渗透模式。此外,优化后的 BILP-101x/ACOF-1 复合膜具有出色的乙醇渗透率(13.2 L m-2 h-1 bar-1)和对各种染料分子的出色阻隔性,同时在连续过滤操作下具有理想而稳定的 OSN 性能。这项工作为提高连续 COF 膜在 OSN 应用中的分离性能开辟了一条新途径。
Molecular soldered COF membrane with crystalline-amorphous heterointerface for fast organic solvent nanofiltration
Covalent organic frameworks (COFs) featuring high porosity and well-defined pore structures are attractive candidates for organic solvent nanofiltration (OSN). However, preparing defect-free COF membrane and manipulating pore size for precise molecular separation in OSN remains a significant challenge. Herein, we address this challenge by developing composite membranes through molecular soldering a benzimidazole-linked polymer (BILP-101x) onto a continuous ACOF-1 membrane. The shared monomer of ACOF-1 and BILP-101x promotes good compatibility, allowing the amorphous BILP-101x chemically stitch the grain boundary defects of the crystalline ACOF-1 layer and create narrow, staggered pores at the interface, thereby enhancing the OSN performance. Non-equilibrium molecular dynamics simulations were employed to reproduce and explain the permeability order of the solvents and dyes, revealing a hydrogen-bond cluster permeation mode for alcohols. Furthermore, the optimized BILP-101x/ACOF-1 composite membrane exhibits excellent ethanol permeance (13.2 L m−2 h−1 bar−1) and outstanding rejection towards various dye molecules, together with desirable and stable OSN performance under continuous filtration operation. This work opens a new avenue for improving the separation performance of continuous COF membranes in OSN applications.