Shaista Khanam , Muhammad Sharif , Xiaochun Cheng , Seifedine Kadry
{"title":"基于手工和深度学习方法的监控中可疑动作识别:技术现状调查","authors":"Shaista Khanam , Muhammad Sharif , Xiaochun Cheng , Seifedine Kadry","doi":"10.1016/j.compeleceng.2024.109811","DOIUrl":null,"url":null,"abstract":"<div><div>Suspicious action recognition is a captivating and testing task in the realm of surveillance. An anomaly recognition framework recognizes abnormal happenings uniquely in contrast to existing examples because any anomaly is an example that is not the same as a bunch of standard examples. Security is a fundamental need in each space, whether it is public or private. The utilization of feature extraction techniques, both from hand-crafted and deep learning methods, significantly influences the comprehensive methodology discussed in detail within this paper. This survey paper comprehensively covers multiple areas of advancements in surveillance. Starting with the importance and application of anomaly recognition in surveillance which leads to a comparison of different survey papers is also presented for reference which also includes the areas that are covered in this survey paper. Available datasets in the realm of surveillance are also explored in this survey paper leading to feature extraction methods of both handcrafted and deep learning. This paper also summarizes different methods available for suspicious action recognition in surveillance. The paper delves into the challenges faced when addressing this vital issue, presents valuable findings, and outlines limitations associated with the topic. It provides extensive analysis and ends by outlining potential future trends.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109811"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suspicious action recognition in surveillance based on handcrafted and deep learning methods: A survey of the state of the art\",\"authors\":\"Shaista Khanam , Muhammad Sharif , Xiaochun Cheng , Seifedine Kadry\",\"doi\":\"10.1016/j.compeleceng.2024.109811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Suspicious action recognition is a captivating and testing task in the realm of surveillance. An anomaly recognition framework recognizes abnormal happenings uniquely in contrast to existing examples because any anomaly is an example that is not the same as a bunch of standard examples. Security is a fundamental need in each space, whether it is public or private. The utilization of feature extraction techniques, both from hand-crafted and deep learning methods, significantly influences the comprehensive methodology discussed in detail within this paper. This survey paper comprehensively covers multiple areas of advancements in surveillance. Starting with the importance and application of anomaly recognition in surveillance which leads to a comparison of different survey papers is also presented for reference which also includes the areas that are covered in this survey paper. Available datasets in the realm of surveillance are also explored in this survey paper leading to feature extraction methods of both handcrafted and deep learning. This paper also summarizes different methods available for suspicious action recognition in surveillance. The paper delves into the challenges faced when addressing this vital issue, presents valuable findings, and outlines limitations associated with the topic. It provides extensive analysis and ends by outlining potential future trends.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"120 \",\"pages\":\"Article 109811\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624007389\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007389","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Suspicious action recognition in surveillance based on handcrafted and deep learning methods: A survey of the state of the art
Suspicious action recognition is a captivating and testing task in the realm of surveillance. An anomaly recognition framework recognizes abnormal happenings uniquely in contrast to existing examples because any anomaly is an example that is not the same as a bunch of standard examples. Security is a fundamental need in each space, whether it is public or private. The utilization of feature extraction techniques, both from hand-crafted and deep learning methods, significantly influences the comprehensive methodology discussed in detail within this paper. This survey paper comprehensively covers multiple areas of advancements in surveillance. Starting with the importance and application of anomaly recognition in surveillance which leads to a comparison of different survey papers is also presented for reference which also includes the areas that are covered in this survey paper. Available datasets in the realm of surveillance are also explored in this survey paper leading to feature extraction methods of both handcrafted and deep learning. This paper also summarizes different methods available for suspicious action recognition in surveillance. The paper delves into the challenges faced when addressing this vital issue, presents valuable findings, and outlines limitations associated with the topic. It provides extensive analysis and ends by outlining potential future trends.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.