María Asunción Padilla-Rascón , Pedro González , Cristóbal J. Carmona
{"title":"SDRDPy:用图形可视化监督描述性规则算法所获知识的应用程序","authors":"María Asunción Padilla-Rascón , Pedro González , Cristóbal J. Carmona","doi":"10.1016/j.softx.2024.101939","DOIUrl":null,"url":null,"abstract":"<div><div>SDRDPy is a desktop application that allows experts an intuitive graphic and tabular representation of the knowledge extracted by any supervised descriptive rule discovery algorithm. The application is able to provide an analysis of the data showing the relevant information of the data set and the relationship between the rules, data and the quality measures associated for each rule regardless of the tool where algorithm has been executed. All of the information is presented in a user-friendly application in order to facilitate expert analysis and also the exportation of reports in different formats.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"28 ","pages":"Article 101939"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDRDPy: An application to graphically visualize the knowledge obtained with supervised descriptive rule algorithms\",\"authors\":\"María Asunción Padilla-Rascón , Pedro González , Cristóbal J. Carmona\",\"doi\":\"10.1016/j.softx.2024.101939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>SDRDPy is a desktop application that allows experts an intuitive graphic and tabular representation of the knowledge extracted by any supervised descriptive rule discovery algorithm. The application is able to provide an analysis of the data showing the relevant information of the data set and the relationship between the rules, data and the quality measures associated for each rule regardless of the tool where algorithm has been executed. All of the information is presented in a user-friendly application in order to facilitate expert analysis and also the exportation of reports in different formats.</div></div>\",\"PeriodicalId\":21905,\"journal\":{\"name\":\"SoftwareX\",\"volume\":\"28 \",\"pages\":\"Article 101939\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SoftwareX\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352711024003091\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024003091","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
SDRDPy: An application to graphically visualize the knowledge obtained with supervised descriptive rule algorithms
SDRDPy is a desktop application that allows experts an intuitive graphic and tabular representation of the knowledge extracted by any supervised descriptive rule discovery algorithm. The application is able to provide an analysis of the data showing the relevant information of the data set and the relationship between the rules, data and the quality measures associated for each rule regardless of the tool where algorithm has been executed. All of the information is presented in a user-friendly application in order to facilitate expert analysis and also the exportation of reports in different formats.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.