S.S. Veena , J. Sreekumar , M.L. Jeeva , G. Byju , G. Suja , S. Sengupta , C. Thangamani , Padmakshi Thakur , Ashish Narayan , Pradnya S. Gudadhe , S. Sunitha
{"title":"优化针对印度象脚山药(Amorphophallus paeoniifolius (Dennst. Nicolson))硬根菌(Sclerotium rolfsii Sacc.在印度象脚薯上(Amorphophallus paeoniifolius (Dennst.)Nicolson","authors":"S.S. Veena , J. Sreekumar , M.L. Jeeva , G. Byju , G. Suja , S. Sengupta , C. Thangamani , Padmakshi Thakur , Ashish Narayan , Pradnya S. Gudadhe , S. Sunitha","doi":"10.1016/j.cropro.2024.107013","DOIUrl":null,"url":null,"abstract":"<div><div>Collar rot, caused by the fungus <em>Sclerotium rolfsii</em>, is the most widespread and devastating disease affecting elephant foot yam (EFY), leading to significant yield loss. In addition to causing economic damage, high disease incidence results in postharvest rot and a lack of quality planting material for the next season. The increasing incidence of collar rot in the past decade is alarming, and existing management practices have not effectively controlled the pathogen. Therefore, there was an urgent need to develop an effective management strategy to mitigate crop loss. The combination of fungicide, Carbendazim + Mancozeb, bio-agents <em>Trichoderma asperellum</em> and <em>Bacillus amyloliquefaciens</em>, showed high inhibition in lab studies. A preliminary field trial was conducted with these selected bio-agents and fungicide, in addition to the organic amendment vermicompost. Based on the results of the preliminary field trial and another study on managing postharvest rot in elephant foot yam, treatments were finalized, and field trials were conducted over 3 years at ICAR-CTCRI. These results were further validated by testing the same treatments in five states of India. Dipping the corms in a combination fungicide (Carbendazim 12% + Mancozeb 63% WP) for 10 min before storage, treating the corms with cow dung slurry enriched with <em>T. asperellum</em> at 5 g/kg corm three days before planting, and drenching the plant base twice with the same fungicide resulted in the lowest disease incidence (3.19%) and highest yield (36.70 t ha⁻<sup>1</sup>) compared to 12.85% disease incidence and 28.37 t ha⁻<sup>1</sup> yield in the control.</div></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":"188 ","pages":"Article 107013"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing management interventions against Sclerotium rolfsii Sacc. On elephant foot yam (Amorphophallus paeoniifolius (Dennst.) Nicolson) in India\",\"authors\":\"S.S. Veena , J. Sreekumar , M.L. Jeeva , G. Byju , G. Suja , S. Sengupta , C. Thangamani , Padmakshi Thakur , Ashish Narayan , Pradnya S. Gudadhe , S. Sunitha\",\"doi\":\"10.1016/j.cropro.2024.107013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Collar rot, caused by the fungus <em>Sclerotium rolfsii</em>, is the most widespread and devastating disease affecting elephant foot yam (EFY), leading to significant yield loss. In addition to causing economic damage, high disease incidence results in postharvest rot and a lack of quality planting material for the next season. The increasing incidence of collar rot in the past decade is alarming, and existing management practices have not effectively controlled the pathogen. Therefore, there was an urgent need to develop an effective management strategy to mitigate crop loss. The combination of fungicide, Carbendazim + Mancozeb, bio-agents <em>Trichoderma asperellum</em> and <em>Bacillus amyloliquefaciens</em>, showed high inhibition in lab studies. A preliminary field trial was conducted with these selected bio-agents and fungicide, in addition to the organic amendment vermicompost. Based on the results of the preliminary field trial and another study on managing postharvest rot in elephant foot yam, treatments were finalized, and field trials were conducted over 3 years at ICAR-CTCRI. These results were further validated by testing the same treatments in five states of India. Dipping the corms in a combination fungicide (Carbendazim 12% + Mancozeb 63% WP) for 10 min before storage, treating the corms with cow dung slurry enriched with <em>T. asperellum</em> at 5 g/kg corm three days before planting, and drenching the plant base twice with the same fungicide resulted in the lowest disease incidence (3.19%) and highest yield (36.70 t ha⁻<sup>1</sup>) compared to 12.85% disease incidence and 28.37 t ha⁻<sup>1</sup> yield in the control.</div></div>\",\"PeriodicalId\":10785,\"journal\":{\"name\":\"Crop Protection\",\"volume\":\"188 \",\"pages\":\"Article 107013\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Protection\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0261219424004411\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261219424004411","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Optimizing management interventions against Sclerotium rolfsii Sacc. On elephant foot yam (Amorphophallus paeoniifolius (Dennst.) Nicolson) in India
Collar rot, caused by the fungus Sclerotium rolfsii, is the most widespread and devastating disease affecting elephant foot yam (EFY), leading to significant yield loss. In addition to causing economic damage, high disease incidence results in postharvest rot and a lack of quality planting material for the next season. The increasing incidence of collar rot in the past decade is alarming, and existing management practices have not effectively controlled the pathogen. Therefore, there was an urgent need to develop an effective management strategy to mitigate crop loss. The combination of fungicide, Carbendazim + Mancozeb, bio-agents Trichoderma asperellum and Bacillus amyloliquefaciens, showed high inhibition in lab studies. A preliminary field trial was conducted with these selected bio-agents and fungicide, in addition to the organic amendment vermicompost. Based on the results of the preliminary field trial and another study on managing postharvest rot in elephant foot yam, treatments were finalized, and field trials were conducted over 3 years at ICAR-CTCRI. These results were further validated by testing the same treatments in five states of India. Dipping the corms in a combination fungicide (Carbendazim 12% + Mancozeb 63% WP) for 10 min before storage, treating the corms with cow dung slurry enriched with T. asperellum at 5 g/kg corm three days before planting, and drenching the plant base twice with the same fungicide resulted in the lowest disease incidence (3.19%) and highest yield (36.70 t ha⁻1) compared to 12.85% disease incidence and 28.37 t ha⁻1 yield in the control.
期刊介绍:
The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics:
-Abiotic damage-
Agronomic control methods-
Assessment of pest and disease damage-
Molecular methods for the detection and assessment of pests and diseases-
Biological control-
Biorational pesticides-
Control of animal pests of world crops-
Control of diseases of crop plants caused by microorganisms-
Control of weeds and integrated management-
Economic considerations-
Effects of plant growth regulators-
Environmental benefits of reduced pesticide use-
Environmental effects of pesticides-
Epidemiology of pests and diseases in relation to control-
GM Crops, and genetic engineering applications-
Importance and control of postharvest crop losses-
Integrated control-
Interrelationships and compatibility among different control strategies-
Invasive species as they relate to implications for crop protection-
Pesticide application methods-
Pest management-
Phytobiomes for pest and disease control-
Resistance management-
Sampling and monitoring schemes for diseases, nematodes, pests and weeds.