{"title":"使用基于对比学习和 k-nearest neighbor 搜索的模块化模型进行跨模态相似临床病例检索","authors":"","doi":"10.1016/j.ijmedinf.2024.105680","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Electronic health record systems have made it possible for clinicians to use previously encountered similar cases to support clinical decision-making. However, most studies for similar case retrieval were based on single-modal data. The existing studies on cross-modal clinical case retrieval were limited. We aimed to develop a CRoss-Modal Retrieval (CRMR) model to retrieve similar clinical cases recorded in different data modalities.</div></div><div><h3>Materials and methods</h3><div>The publically available Medical Information Mart for Intensive Care-Chest X-ray (MIMIC-CXR) dataset was used for model development and testing. The CRMR model was designed as a modular model containing two feature extraction models, two feature transformation models, one feature transformation optimization model, and one case retrieval model. The ability to retrieve similar clinical cases recorded in different data modalities was facilitated by the use of contrastive deep learning and <em>k</em>-nearest neighbor search.</div></div><div><h3>Results</h3><div>The average retrieval precision, denoted as AP@<em>k</em>, of the developed CRMR model, were 76.9 %@5, 76.7 %@10, 76.5 %@20, 76.3 %@50, and 77.9 %@100, respectively. Here <em>k</em> is the number of similar cases returned after retrieval. The average retrieval time varied from 0.013 ms to 0.016 ms with <em>k</em> varying from 5 to 100. Moreover, the model can retrieve similar cases with the same multiple radiographic manifestations as the query case.</div></div><div><h3>Discussion</h3><div>The CRMR model has shown promising cross-modal retrieval performance in clinical case analysis, with the potential for future scalability and improvement in handling diverse disease types and data modalities. The CRMR model has promising potential to aid clinicians in making optimal and explainable clinical decisions.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-modal similar clinical case retrieval using a modular model based on contrastive learning and k-nearest neighbor search\",\"authors\":\"\",\"doi\":\"10.1016/j.ijmedinf.2024.105680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Electronic health record systems have made it possible for clinicians to use previously encountered similar cases to support clinical decision-making. However, most studies for similar case retrieval were based on single-modal data. The existing studies on cross-modal clinical case retrieval were limited. We aimed to develop a CRoss-Modal Retrieval (CRMR) model to retrieve similar clinical cases recorded in different data modalities.</div></div><div><h3>Materials and methods</h3><div>The publically available Medical Information Mart for Intensive Care-Chest X-ray (MIMIC-CXR) dataset was used for model development and testing. The CRMR model was designed as a modular model containing two feature extraction models, two feature transformation models, one feature transformation optimization model, and one case retrieval model. The ability to retrieve similar clinical cases recorded in different data modalities was facilitated by the use of contrastive deep learning and <em>k</em>-nearest neighbor search.</div></div><div><h3>Results</h3><div>The average retrieval precision, denoted as AP@<em>k</em>, of the developed CRMR model, were 76.9 %@5, 76.7 %@10, 76.5 %@20, 76.3 %@50, and 77.9 %@100, respectively. Here <em>k</em> is the number of similar cases returned after retrieval. The average retrieval time varied from 0.013 ms to 0.016 ms with <em>k</em> varying from 5 to 100. Moreover, the model can retrieve similar cases with the same multiple radiographic manifestations as the query case.</div></div><div><h3>Discussion</h3><div>The CRMR model has shown promising cross-modal retrieval performance in clinical case analysis, with the potential for future scalability and improvement in handling diverse disease types and data modalities. The CRMR model has promising potential to aid clinicians in making optimal and explainable clinical decisions.</div></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386505624003435\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505624003435","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Cross-modal similar clinical case retrieval using a modular model based on contrastive learning and k-nearest neighbor search
Objective
Electronic health record systems have made it possible for clinicians to use previously encountered similar cases to support clinical decision-making. However, most studies for similar case retrieval were based on single-modal data. The existing studies on cross-modal clinical case retrieval were limited. We aimed to develop a CRoss-Modal Retrieval (CRMR) model to retrieve similar clinical cases recorded in different data modalities.
Materials and methods
The publically available Medical Information Mart for Intensive Care-Chest X-ray (MIMIC-CXR) dataset was used for model development and testing. The CRMR model was designed as a modular model containing two feature extraction models, two feature transformation models, one feature transformation optimization model, and one case retrieval model. The ability to retrieve similar clinical cases recorded in different data modalities was facilitated by the use of contrastive deep learning and k-nearest neighbor search.
Results
The average retrieval precision, denoted as AP@k, of the developed CRMR model, were 76.9 %@5, 76.7 %@10, 76.5 %@20, 76.3 %@50, and 77.9 %@100, respectively. Here k is the number of similar cases returned after retrieval. The average retrieval time varied from 0.013 ms to 0.016 ms with k varying from 5 to 100. Moreover, the model can retrieve similar cases with the same multiple radiographic manifestations as the query case.
Discussion
The CRMR model has shown promising cross-modal retrieval performance in clinical case analysis, with the potential for future scalability and improvement in handling diverse disease types and data modalities. The CRMR model has promising potential to aid clinicians in making optimal and explainable clinical decisions.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.