双芳基-2-氧肟酸在可见光促进下有氧合成菲啶酮类化合物

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Photochemistry and Photobiology A-chemistry Pub Date : 2024-10-24 DOI:10.1016/j.jphotochem.2024.116113
Jia-Dong Guo , Chen-Hong Wang , Qiao He , Xiu-Long Yang, Xiao-Ning Guo, Bin Chen, Chen-Ho Tung, Li-Zhu Wu
{"title":"双芳基-2-氧肟酸在可见光促进下有氧合成菲啶酮类化合物","authors":"Jia-Dong Guo ,&nbsp;Chen-Hong Wang ,&nbsp;Qiao He ,&nbsp;Xiu-Long Yang,&nbsp;Xiao-Ning Guo,&nbsp;Bin Chen,&nbsp;Chen-Ho Tung,&nbsp;Li-Zhu Wu","doi":"10.1016/j.jphotochem.2024.116113","DOIUrl":null,"url":null,"abstract":"<div><div>Phenanthridinones is an important structure found in natural products and biologically active molecules. An intramolecular decarboxylative cyclization of biaryl-2-oxamic acids is here presented to generate phenanthridinones, utilizing organic dye (4CzIPN) as the photocatalyst and base (K<sub>3</sub>PO<sub>4</sub>) in air at room temperature. The protocol exhibits great functional group tolerance, good to excellent yields, and scaled up application.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"460 ","pages":"Article 116113"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visible-light-promoted aerobic synthesis of phenanthridinones from biaryl-2-oxamic acids\",\"authors\":\"Jia-Dong Guo ,&nbsp;Chen-Hong Wang ,&nbsp;Qiao He ,&nbsp;Xiu-Long Yang,&nbsp;Xiao-Ning Guo,&nbsp;Bin Chen,&nbsp;Chen-Ho Tung,&nbsp;Li-Zhu Wu\",\"doi\":\"10.1016/j.jphotochem.2024.116113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phenanthridinones is an important structure found in natural products and biologically active molecules. An intramolecular decarboxylative cyclization of biaryl-2-oxamic acids is here presented to generate phenanthridinones, utilizing organic dye (4CzIPN) as the photocatalyst and base (K<sub>3</sub>PO<sub>4</sub>) in air at room temperature. The protocol exhibits great functional group tolerance, good to excellent yields, and scaled up application.</div></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":\"460 \",\"pages\":\"Article 116113\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024006579\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024006579","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

菲啶酮是天然产物和生物活性分子中的一种重要结构。本文介绍了利用有机染料(4CzIPN)作为光催化剂和碱(K3PO4)在室温空气中对双芳基-2-氧肟酸进行分子内脱羧环化生成菲啶酮的方法。该方法对官能团有很好的耐受性,产率高至极佳,并可扩大应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visible-light-promoted aerobic synthesis of phenanthridinones from biaryl-2-oxamic acids
Phenanthridinones is an important structure found in natural products and biologically active molecules. An intramolecular decarboxylative cyclization of biaryl-2-oxamic acids is here presented to generate phenanthridinones, utilizing organic dye (4CzIPN) as the photocatalyst and base (K3PO4) in air at room temperature. The protocol exhibits great functional group tolerance, good to excellent yields, and scaled up application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
期刊最新文献
The influence of microbial sources on astaxanthin implementation as sensitizer in dye sensitized solar cells (DSSCs) Effect of concentration on singlet oxygen generation from xanthene-based photosensitizers Amorphous titanium dioxide with synergistic effect of nitrogen doping and oxygen vacancies by photoexcited sol-gel preparation for enhanced photodegradation of tetracycline LaSrO3 perovskite quantum dots as a fluorescent probe for the detection of bilirubin and epinephrine via FRET and IFE mechanisms CO2 photo-reduction with polyoxometalates-porphyrin based COF: A deep dive into spectroscopy and thermal behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1