{"title":"经处理的纳米高粱-小米-胡麻-生物硅酸和剑麻纤维增强乙烯基酯复合材料的承重和加工性能","authors":"G Ananth, S Thirugnanam, Srinivasan Rajaram","doi":"10.1007/s12221-024-00736-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the mechanical properties of composites focusing on tensile, flexural, compression strength, Izod impact toughness, hardness, fatigue life, creep resistance, and drilling behavior. The approach involves extracting nano-biosilica from sorghum husk and infusing it with silane-treated kenaf fiber under temperature aging conditions to enhance composite materials’ properties. The reinforcement consists of kenaf fibers (34.2–43.2 µm in diameter) and nano-biosilica prepared from sorghum millet husk via a thermochemical method. Silane treatment enhances the adhesive bonding between the matrix (vinyl ester resin and methyl ethyl ketone peroxide in a 10:1 ratio) and reinforcing agents. Composite fabrication employs a hand layup method with varying concentrations of biosilica (1 vol. %, 3 vol. %, and 5 vol. %) and kenaf fiber. Notably, specimens N2 and M2 exhibited superior performance, with N2 achieving tensile strength of 101 MPa, flexural strength of 123 MPa, compression strength of 159.9 MPa, Izod impact toughness of 4.9 kJ/m<sup>2</sup>, and hardness of 98 Shore-D. Even after undergoing aging at 40 °C and 70% humidity for 30 days, M2 demonstrated remarkable durability to the silane treatment of both fiber and filler with tensile strength of 85 MPa, flexural strength of 117 MPa, compression strength of 143 MPa, Izod impact toughness of 4.2 kJ/m<sup>2</sup>, and hardness of 95 Shore-D. SEM analysis revealed uniform dispersion of filler particles in N2 and M2, highlighting the effectiveness of the silane treatment in enhancing microstructural characteristics and durability. This research underscores the potential of silane-treated kenaf-fiber- and nano-biosilica-reinforced vinyl ester composites for applications requiring enhanced mechanical properties and durability.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 11","pages":"4387 - 4399"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load-Bearing and Machining Behavior of Treated Nano-sorghum-Millet-Husk-Biosilica- and Kenaf-Fiber-Reinforced Vinyl Ester Composite\",\"authors\":\"G Ananth, S Thirugnanam, Srinivasan Rajaram\",\"doi\":\"10.1007/s12221-024-00736-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the mechanical properties of composites focusing on tensile, flexural, compression strength, Izod impact toughness, hardness, fatigue life, creep resistance, and drilling behavior. The approach involves extracting nano-biosilica from sorghum husk and infusing it with silane-treated kenaf fiber under temperature aging conditions to enhance composite materials’ properties. The reinforcement consists of kenaf fibers (34.2–43.2 µm in diameter) and nano-biosilica prepared from sorghum millet husk via a thermochemical method. Silane treatment enhances the adhesive bonding between the matrix (vinyl ester resin and methyl ethyl ketone peroxide in a 10:1 ratio) and reinforcing agents. Composite fabrication employs a hand layup method with varying concentrations of biosilica (1 vol. %, 3 vol. %, and 5 vol. %) and kenaf fiber. Notably, specimens N2 and M2 exhibited superior performance, with N2 achieving tensile strength of 101 MPa, flexural strength of 123 MPa, compression strength of 159.9 MPa, Izod impact toughness of 4.9 kJ/m<sup>2</sup>, and hardness of 98 Shore-D. Even after undergoing aging at 40 °C and 70% humidity for 30 days, M2 demonstrated remarkable durability to the silane treatment of both fiber and filler with tensile strength of 85 MPa, flexural strength of 117 MPa, compression strength of 143 MPa, Izod impact toughness of 4.2 kJ/m<sup>2</sup>, and hardness of 95 Shore-D. SEM analysis revealed uniform dispersion of filler particles in N2 and M2, highlighting the effectiveness of the silane treatment in enhancing microstructural characteristics and durability. This research underscores the potential of silane-treated kenaf-fiber- and nano-biosilica-reinforced vinyl ester composites for applications requiring enhanced mechanical properties and durability.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"25 11\",\"pages\":\"4387 - 4399\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00736-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00736-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Load-Bearing and Machining Behavior of Treated Nano-sorghum-Millet-Husk-Biosilica- and Kenaf-Fiber-Reinforced Vinyl Ester Composite
This study investigates the mechanical properties of composites focusing on tensile, flexural, compression strength, Izod impact toughness, hardness, fatigue life, creep resistance, and drilling behavior. The approach involves extracting nano-biosilica from sorghum husk and infusing it with silane-treated kenaf fiber under temperature aging conditions to enhance composite materials’ properties. The reinforcement consists of kenaf fibers (34.2–43.2 µm in diameter) and nano-biosilica prepared from sorghum millet husk via a thermochemical method. Silane treatment enhances the adhesive bonding between the matrix (vinyl ester resin and methyl ethyl ketone peroxide in a 10:1 ratio) and reinforcing agents. Composite fabrication employs a hand layup method with varying concentrations of biosilica (1 vol. %, 3 vol. %, and 5 vol. %) and kenaf fiber. Notably, specimens N2 and M2 exhibited superior performance, with N2 achieving tensile strength of 101 MPa, flexural strength of 123 MPa, compression strength of 159.9 MPa, Izod impact toughness of 4.9 kJ/m2, and hardness of 98 Shore-D. Even after undergoing aging at 40 °C and 70% humidity for 30 days, M2 demonstrated remarkable durability to the silane treatment of both fiber and filler with tensile strength of 85 MPa, flexural strength of 117 MPa, compression strength of 143 MPa, Izod impact toughness of 4.2 kJ/m2, and hardness of 95 Shore-D. SEM analysis revealed uniform dispersion of filler particles in N2 and M2, highlighting the effectiveness of the silane treatment in enhancing microstructural characteristics and durability. This research underscores the potential of silane-treated kenaf-fiber- and nano-biosilica-reinforced vinyl ester composites for applications requiring enhanced mechanical properties and durability.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers