{"title":"两种 AB2 型化合物的反常热膨胀理论研究","authors":"Xin Chen, Yili Cao, Xianran Xing","doi":"10.1007/s12274-024-6878-9","DOIUrl":null,"url":null,"abstract":"<div><p>Anomalous thermal expansion, or other words, negative thermal expansion (NTE), resulting from the lattice contraction upon temperature increasing, has been an enduring topic for material science and engineering. The variation of a lattice go with the temperature is straightly originated from its electronic structures and is inseparable from those physical properties. In the past several decades, many efforts have been made to searching new series of NTE compounds or control the thermal expansion performance in order to supply various demands of different extreme applications. These development of new NTE systems also dependences on the theoretical studies. Here, we carried out theoretical calculation on CrB<sub>2</sub> and FeZr<sub>2</sub> with anisotropic negative thermal expansion. Intriguingly, theoretical calculations reveal that the binding of either Cr-Cr pair or Fe-Fe pair is relatively small. The results reveal that the origin of NTE is the ordered magnetic state during the increasing of temperature. The localized electrons would prevent the lattice parameters increase with heating, which shows macroscopic NTE phenomenon.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9830 - 9833"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on anomalous thermal expansion of two AB2-type compounds\",\"authors\":\"Xin Chen, Yili Cao, Xianran Xing\",\"doi\":\"10.1007/s12274-024-6878-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anomalous thermal expansion, or other words, negative thermal expansion (NTE), resulting from the lattice contraction upon temperature increasing, has been an enduring topic for material science and engineering. The variation of a lattice go with the temperature is straightly originated from its electronic structures and is inseparable from those physical properties. In the past several decades, many efforts have been made to searching new series of NTE compounds or control the thermal expansion performance in order to supply various demands of different extreme applications. These development of new NTE systems also dependences on the theoretical studies. Here, we carried out theoretical calculation on CrB<sub>2</sub> and FeZr<sub>2</sub> with anisotropic negative thermal expansion. Intriguingly, theoretical calculations reveal that the binding of either Cr-Cr pair or Fe-Fe pair is relatively small. The results reveal that the origin of NTE is the ordered magnetic state during the increasing of temperature. The localized electrons would prevent the lattice parameters increase with heating, which shows macroscopic NTE phenomenon.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 11\",\"pages\":\"9830 - 9833\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6878-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6878-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Theoretical study on anomalous thermal expansion of two AB2-type compounds
Anomalous thermal expansion, or other words, negative thermal expansion (NTE), resulting from the lattice contraction upon temperature increasing, has been an enduring topic for material science and engineering. The variation of a lattice go with the temperature is straightly originated from its electronic structures and is inseparable from those physical properties. In the past several decades, many efforts have been made to searching new series of NTE compounds or control the thermal expansion performance in order to supply various demands of different extreme applications. These development of new NTE systems also dependences on the theoretical studies. Here, we carried out theoretical calculation on CrB2 and FeZr2 with anisotropic negative thermal expansion. Intriguingly, theoretical calculations reveal that the binding of either Cr-Cr pair or Fe-Fe pair is relatively small. The results reveal that the origin of NTE is the ordered magnetic state during the increasing of temperature. The localized electrons would prevent the lattice parameters increase with heating, which shows macroscopic NTE phenomenon.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.